٦

Assessment Schedule – 2021

Scholarship Calculus (93202)

Evidence Statement

Г

Q	Solution
ONE (a)	$f(x) = \frac{x^2 - x - 2}{x^2 - 2x - 3} = \frac{(x+1)(x-2)}{(x+1)(x-3)} = \frac{x-2}{x-3}$ $f(x) > 0 \text{ for } x < 2 \text{ or } x > 3 \text{ and } x \neq -1$
	-2 -1 0 1 2 3 4
(b)	$x \neq 0$, as 0^{0} is undefined. Now, since $x > 0$ $\ln x^{x\sqrt{x}} = \ln x^{2x}$ so, $x\sqrt{x} \ln x = 2x \ln x$ $x(\sqrt{x} - 2)\ln x = 0$ x = 4, or $x = 1The solutions are x = 1 and x = 4.$
(c)	$-2x^{2} - x + 1 = 2x^{2} - x - 1$ $x = \pm \frac{1}{\sqrt{2}}$ Since $-2x^{2} - x + 1 - (2x^{2} - x - 1) = -4x^{2} + 2$ is an even function, therefore the <i>y</i> -axis, i.e. the line $x = 0$, divides the required area into equal parts.
(d)	Let $\sqrt{x+1} = u$. Then, when $x = 0, u = 1$, and when $x = 2, u = \sqrt{3}$. Also, $x+1 = u^2$, $dx = 2u du$. Substituting: $\int_1^{\sqrt{3}} \frac{(u^2 - 1)2u du}{u} = 2 \int_1^{\sqrt{3}} (u^2 - 1) du$ $= \left[2 \left(\frac{u^3}{3} - u \right) \right]_1^{\sqrt{3}} = 2 \left(\frac{(\sqrt{3})^3}{3} - \sqrt{3} \right) - 2 \left(\frac{1^3}{3} - 1 \right) = 2\sqrt{3} - 2\sqrt{3} + \frac{4}{3} = \frac{4}{3}$

(e)
Area =
$$2\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx$$

= $2\left[-\cos x - \sin x\right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}$
= $2\left(\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}\right) = \frac{8}{\sqrt{2}} = 4\sqrt{2}$
Alternate solution :
 $\int_{0}^{2\pi} |\sin x - \cos x| dx =$
 $\int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx + \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) dx$
= $\left[\sin x + \cos x\right]_{0}^{\frac{\pi}{4}} + \left[-\cos x - \sin x\right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} + \left[\sin x + \cos x\right]_{\frac{5\pi}{4}}^{2\pi}$
= $\left(\frac{2}{\sqrt{2}} - 1\right) + \left(\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}\right) + \left(1 + \frac{2}{\sqrt{2}}\right) = \frac{8}{\sqrt{2}} = 4\sqrt{2}$

Q	Solution
TWO (a)	$\log_{\frac{a}{b}}\left(\frac{a}{b}\right) = 1,$ i.e. $\log_{\frac{a}{b}} a - \log_{\frac{a}{b}} b = 1$ Since $\log_{\frac{a}{b}} b = 5$, we have $\log_{\frac{a}{b}} a = 6$ $\log_{\frac{a}{b}}\left(\sqrt[3]{b} \times \sqrt[3]{a}\right) = \frac{1}{3}\log_{\frac{a}{b}} b + \frac{1}{4}\log_{\frac{a}{b}} a = \frac{5}{3} + \frac{6}{4} = \frac{19}{6}$ Alternate solution : $\left(\frac{a}{b}\right)^5 = b \Rightarrow a = b^{\frac{6}{5}}$ $\Rightarrow \log_{\frac{a}{b}}(a) = \log_{\frac{a}{b}}\left(b^{\frac{6}{5}}\right) = \frac{6}{5}\log_{\frac{a}{b}}(b) = 6$ $\therefore \log_{\frac{a}{b}}\left(\sqrt[3]{b} \times \sqrt[4]{a}\right) = \frac{1}{3}\log_{\frac{a}{b}} b + \frac{1}{4}\log_{\frac{a}{b}} a = \frac{5}{3} + \frac{6}{4} = \frac{19}{6}$
(b)	Let x and y be the numbers. Then $x + y = 11$. We must maximise $P = x^2y^3 = (11 - y)^2y^3$ Clearly $0 \le y \le 11$. $\frac{dP}{dy} = (11 - y)^2 (3y^2) + y^3 [2(11 - y)(-1)]$ $= (11 - y) y^2 [3(11 - y) - 2y]$ $= (11 - y) y^2 (33 - 5y)$ Critical numbers are 0, 11 and $\frac{33}{5}$ P(0) = P(11) = 0 Absolute max is when $y = \frac{33}{5}$. Solution set $x = \frac{22}{5}$ and $y = \frac{33}{5}$.
(c)	Since 2020π is a multiple of 2π , $f(2020) = a \sin \alpha + b \cos \alpha + 1 = 10$ Let $y = 2020\pi + \alpha$ $f(2021) = a \sin(y + \pi) + b \cos(y + \pi) + 1$ $= -a \sin y - b \cos y + 1$ $= -(a \sin \alpha + b \cos \alpha) + 1 = -8$ Alternate solution.
	Use the composite angle formula.

(d)	$\ln f(x) = \sin x \times \ln(x^2 + 1)$
	$\frac{f'(x)}{f(x)} = \cos x \times \ln\left(x^2 + 1\right) + \frac{2x \times \sin x}{x^2 + 1}$
	$f'(x) = (x^{2} + 1)^{\sin x} \times \left[\cos x \times \ln(x^{2} + 1) + \frac{2x \times \sin x}{x^{2} + 1}\right]$
	$f'\left(\frac{\pi}{2}\right) = \left(\left(\frac{\pi}{2}\right)^2 + 1\right)^1 \times \left[0 + \frac{\pi}{\left(\frac{\pi}{2}\right)^2 + 1}\right] = \pi$
(e)	Since $\log_2 x$ increases uniformly on $(0, \infty)$, let $\log_2 x = A$.
	Then $f(A) = A^2 + 6mA + n$ and $f'(A) = 2A + 6m$, which has a min when $A = -3m$.
	So, $f(x) = (\log_2 x)^2 + 6m(\log_2 x) + n$ has a minimum when $\log_2 x = -3m$.
	$\log_2 \frac{1}{8} = -3m$ and $-3 = -3m$ or $m = 1$
	Since $f\left(\frac{1}{8}\right) = -2$,
	-2 = 9 - 18 + n
	n = 7
	Alternate solution.
	$\frac{\mathrm{d}}{\mathrm{d}x}(\log_2 x) = \frac{1}{x \cdot \ln 2}$
	$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = 2\log_2 x \cdot \frac{1}{x \cdot \ln 2} + 6m \cdot \frac{1}{x \cdot \ln 2}$
	$x = \frac{1}{8} : \frac{-6}{\frac{1}{8}\ln 2} + \frac{6m}{\frac{1}{8}\ln 2} = 0 \to m = 1$
	$-2 = (-3)^2 + 6(1)(-3) + n \to n = 7$

Q	Solution
THREE (a)	$\frac{\sin\theta}{1-\cot\theta} + \frac{\cos\theta}{1-\tan\theta} = \frac{\sin^2\theta}{\sin\theta - \cos\theta} + \frac{\cos^2\theta}{\cos\theta - \sin\theta}$ $= \frac{\sin^2\theta - \cos^2\theta}{\sin\theta - \cos\theta}$ $= \frac{(\sin\theta - \cos\theta)(\sin\theta + \cos\theta)}{(\sin\theta - \cos\theta)}$ $= \sin\theta + \cos\theta = \text{sum of roots} = -\frac{b}{a}$
(b)	$y^{2} = m^{2}x^{2} + 4\sqrt{21}mx + 84$ $\therefore 16x^{2} - 9m^{2}x^{2} - 36\sqrt{21}mx - 756 = 144$ $x^{2}(16 - 9m^{2}) - 36\sqrt{21}mx - 900 = 0$ Require $b^{2} - 4ac = 0$ $\Rightarrow 5184m^{2} = 57\ 600 \Rightarrow m^{2} = \frac{100}{9} \text{ or } m = \pm \frac{10}{3}$
(c)	$y' = 3ax^{2} - b$ Now at $x = \sqrt{3}$: $y' _{x=\sqrt{3}} = 1$ since $\tan 45^{\circ} = 1$ $\Rightarrow 9a - b = 1$ Now at P and Q, $y(\pm\sqrt{3}) = 0$: $\sqrt{3}3a - \sqrt{3}b = 0$ $\Rightarrow 3a - b = 0$ $\therefore 6a = 1, a = \frac{1}{6}, b = \frac{1}{2}$, and $y'(0) = -b = -\frac{1}{2}$
(d)(i)	5! = 120
(ii)	$6! \times 2 = 1440$
(iii)	$7! - 6! \times 2 = 3600$

T

Q	Solution	
FOUR (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.16A + D$	
$\int \frac{\mathrm{d}A}{0.16A+D} = \int 1\mathrm{d}t$	$\int \frac{\mathrm{d}A}{0.16A+D} = \int 1\mathrm{d}t$	
	$\left \frac{1}{0.16} \ln \left 0.16A + D \right = t + c$	
	The initial deposit $A(t = 0) = 76000$, then	
	$\frac{1}{0.16} \ln \left 0.16 \times 76000 + 5000 \right = c \ (c = 60.94) \text{ and when } t = 10:$	
	$\frac{1}{0.16} \ln \left 0.16A + 5000 \right = 10 + c$	
	$\frac{1}{0.16} \ln \left 0.16A + 5000 \right - \frac{1}{0.16} \ln \left 0.16 \times 76000 + 5000 \right = 10$	
	$\ln \frac{0.16A + 5000}{0.16 \times 76000 + 5000} = 1.6$	
	$A = (0.16 \times 76000 + 5000)e^{1.6} = 499962.73$	
	Only \$37.27 short, so will be fine.	
	Alternate solutions	
$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.16A + D$	$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.16A + D$	
	$\int \frac{\mathrm{d}A}{0.16A + D} = \int 1 \mathrm{d}t$	
	$\left \frac{1}{0.16} \ln \left 0.16A + D \right = t + c$	
	Let $A(0) = x$ be the initial deposit required to meet their goal. Also, $A(10) = 500000$.	
	Then $\frac{1}{0.16} \ln 0.16x + 5000 = c$ and	
	$\frac{1}{0.16} \ln \left 0.16 \times 500000 + 5000 \right = 10 + c$	
	so 1	
	$\frac{1}{0.16} \ln 0.16x + 5000 = \frac{1}{0.16} \ln 0.16 \times 500000 + 5000 - 10$	
	$\ln 0.16x + 5000 = \ln 85000 - 1.6$	
	= 9.75041 0.16x + 5000 = e ^{9.75041}	
	$x = \$76\ 006.82$	
	Although short by \$6.82, realistically this initial investment will be sufficient .	

Alternate solution : If the initial investment is correct then, $\int_{0}^{10} \mathrm{d}t = \int_{76000}^{500000} \frac{1}{0.16A + D} \mathrm{d}A$ LHS is clearly 10 Consider the RHS $t = \frac{1}{0.16} \left[\ln \left(16A + D \right) \right]_{76000}^{500000}$ $= \frac{1}{0.16} \left[\ln \left(16 \times 500\,000 + 5000 \right) \right] - \left[\ln \left(16 \times 76\,000 + 5000 \right) \right]$ = 70.9400 - 60.9396=10.0004Which is about 3.5 hours more than ten years. The initial deposit of \$76000 will be sufficient. (b)(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x - 1\right)y^3$ $\int y^{-3} \, \mathrm{d} y = \int (x-1) \, \mathrm{d} x$ $-\frac{y^{-2}}{2} = \frac{x^2}{2} - x + c$ At x = 0 y = a: $c = -\frac{1}{2a^2}$ $y^{-2} = -x^2 + 2x + \frac{1}{a^2}$ $y = \pm \left(\frac{1}{a^2} - x^2 + 2x\right)^{-\frac{1}{2}}$ Which, when graphed for $a \neq 0$ would give: а -a However, since a > 0, we consider only the positive root; hence the function required is: $y(x) = +\left(\frac{1}{a^2} - x^2 + 2x\right)^{-\frac{1}{2}}$ For *a* finite and positive, the condition $\frac{1}{a^2} - x^2 + 2x > 0$ or $x^2 - 2x - \frac{1}{a^2} < 0$ must be satisfied for a *real* domain to (ii) exist. The quadratic has roots $x = 1 \pm \sqrt{1 + \frac{1}{\alpha^2}}$. The natural domain of y(x) is $\left(1 - \sqrt{1 + \frac{1}{a^2}}, 1 + \sqrt{1 + \frac{1}{a^2}}\right)$.

Range: As
$$x \to \left(1 \mp \sqrt{1 + \frac{1}{a^2}}\right), y(x) \to +\infty$$
.
The minimum value of $y(x)$ occurs at the turning point of $x^2 - 2x - \frac{1}{a^2}$,
i.e. when $x = 1$ and $y(1) = \left(1 + \frac{1}{a^2}\right)^{\frac{1}{2}}$. The range is $\left(1 + \frac{1}{a^2}\right)^{\frac{1}{2}} \le y$. i.e. $y \ge \frac{a}{\sqrt{1 + a^2}}$.
(iii)

$$\lim_{a \to \infty} \left[\left(\frac{1}{a^2} - x^2 + 2x\right)^{\frac{1}{2}} \right] = \left(-x^2 + 2x\right)^{\frac{1}{2}}$$
Which is defined if $2x - x^2 > 0$, i.e., as $a \to +\infty$, the domain approaches $0 < x < 2$.
The range:
As $x \to 0^+, y(x) \to +\infty$ and as $x \to 2^-, y(x) \to +\infty$. The minimum value will occur when $-x^2 + 2x$ takes on its max value, which is when $x = 1$ and $y(1) = + \left(-1^2 + 2 \times 1\right)^{-\frac{1}{2}} = 1$.

$$\int_{0}^{0} \frac{1}{2} = \frac{1}{2}$$

(c)

$$T_{1} = \frac{3}{2} = 1 + \frac{1}{1 \times 2} = 1 + 1 - \frac{1}{2}$$

$$T_{2} = \frac{7}{6} = 1 + \frac{1}{2 \times 3} = 1 + \frac{1}{2} - \frac{1}{3}$$

$$\vdots$$

$$T_{2021} = \frac{2021 \times 2022 + 1}{2021 \times 2022} = 1 + \frac{1}{2021 \times 2022} = 1 + \frac{1}{2021} - \frac{1}{2022}$$
Therefore

$$\sum_{n=1}^{2021} T_{n} = 2021 + 1 - \frac{1}{2022} = \frac{2022^{2} - 1}{2022} \text{ or } \frac{2021 \times 2023}{2022} = 2021 \frac{2021}{2022}$$
Or in general:

$$\sum_{n=1}^{n} \sqrt{1 + \frac{1}{r^{2}} + \frac{1}{(r+1)^{2}}} = \sum_{n=1}^{n} \sqrt{\frac{r^{2}(r+1)^{2} + (r+1)^{2} + r^{2}}{r^{2}(r+1)^{2}}}$$

$$= \sum_{n=1}^{n} \sqrt{\frac{r^{2}(r+1)^{2} + 2r(r+1) + 1}{r^{2}(r+1)^{2}}}$$

$$= \sum_{n=1}^{n} \sqrt{\frac{r^{2}(r+1)^{2} + 2r(r+1) + 1}{r^{2}(r+1)^{2}}}$$

$$= \sum_{n=1}^{n} \sqrt{\frac{r^{2}(r+1)^{2} + 2r(r+1) + 1}{r^{2}(r+1)^{2}}}$$

$$= \sum_{n=1}^{n} \sqrt{\frac{r^{2} + r + 1}{r^{2}(r+1)^{2}}}$$

$$= \sum_{n=1}^{n} \left(1 + \frac{1}{r(r+1)}\right) = \sum_{n=1}^{n} \left(1 + \frac{1}{r} - \frac{1}{r+1}\right)$$
Since $\sum_{n=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1}\right)$

$$= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\sum_{n=1}^{n} \sqrt{1 + \frac{1}{r^{2}} + \frac{1}{(r+1)^{2}}} = \sum_{n=1}^{n} \left(1 + \frac{1}{r} - \frac{1}{r+1}\right) = n + 1 - \frac{1}{n+1}$$
Therefore, $\sum_{n=1}^{2021} T_{r} = 2021 + 1 - \frac{1}{2022} = 2021 \frac{2021}{2022}$

Q	Solution	
FIVE (a)	$m_{AB} = 1, m_{BC} = -1$	
To make BC = 4AB, B can be translated by $\begin{pmatrix} 8 \\ -8 \end{pmatrix}$ or $\begin{pmatrix} -8 \\ 8 \end{pmatrix}$		
	Therefore C is $(11, -4)$ or $(-5, 12)$	
	Alternate solution:	
	$ AB = \sqrt{2^2 + 2^2} = \sqrt{8}$	
	The line BC is given by: 1 - 1(-2)	
	y - 4 = -1(x - 3) y = -x + 7	
	For the required magnitude we want:	
	$\sqrt{(x-3)^2 + (4-(-x+7))^2} = 4\sqrt{8}$	
	$2x^2 - 12x + 18 = 128$	
	$x^2 - 6x - 55 = 0$	
	(x-11)(x+5) = 0	
	x = 11 or x = -5	
	The points defining C are (11,-4) or (-5,12).	
(b)	Multiply $z\overline{z}$ to the equation:	
	$z^2\overline{z} + z = z\overline{z}^2 + \overline{z}$	
	Note that $z\overline{z} = x^2 + y^2$,	
	$(x^{2} + y^{2})z + z = (x^{2} + y^{2})\overline{z} + \overline{z}$	
	$\left(x^2 + y^2 + 1\right)(z - \overline{z}) = 0$	
	Therefore, $z = \overline{z} \rightarrow y = 0, x \in \mathbb{R}, x \neq 0$	
	Alternate solution:	
	$\frac{z\overline{z}+1}{z\overline{z}+1} = \frac{z\overline{z}+1}{z\overline{z}+1}$	
	$z \overline{z}$ $z = \overline{z} \rightarrow v = 0 x \in \mathbb{R} x \neq 0$	
	Alternate solution:	
	$x + iy + \frac{x + iy}{x^2 + y^2} = x - iy + \frac{x - iy}{x^2 + y^2}$	
	$(x^{2} + y^{2})(x + iy) + x + iy = (x^{2} + y^{2})(x - iy) + x - iy$	
	$\left(x^2 + y^2\right)\left[2iy\right] + 2iy = 0$	
	$\left[2iy\right]\left[x^2+y^2+1\right]=0$	
	$y = 0$ or $x^2 + y^2 = -1$	
	so $y = 0$	
	Back substituting into the original equation gives	
	$x + \frac{1}{x} = x + \frac{1}{x}$, which is true for all real $x \neq 0$.	
	The solution set is the Real axis with the exclusion of 0.	

Alternate solution.
AB = AC so

$$|z_{2} - z_{1}| = |z_{1} - z_{3}| \text{ and}$$

$$\arg(z_{2} - z_{1}) - \arg(z_{1} - z_{3}) = 2\alpha$$
Therefore

$$z_{2} - z_{1} = (z_{1} - z_{3})(\cos 2\alpha + i\sin 2\alpha) \quad (A)$$
In the given triangle

$$BC^{2} = \overline{AC}^{2} + \overline{AB}^{2} - 2\overline{AC} \cdot \overline{AB} \cdot \cos(180^{\circ} - 2\alpha)$$

$$BC^{2} = 2\overline{AC}^{2} - 2\overline{AC}^{2} (-\cos 2\alpha)$$

$$BC^{2} = 2\overline{AC}^{2} (1 + \cos 2\alpha) = 4\overline{AC}^{2} \cos^{2} \alpha \text{ and } \overline{BC} = 2\overline{AC} \cos \alpha$$
So: $|z_{2} - z_{3}| = 2|z_{1} - z_{3}|\cos\alpha$ and

$$\arg(z_{2} - z_{3}) - \arg(z_{1} - z_{3}) = \alpha, \text{ which gives}$$

$$z_{2} - z_{3} = 2(z_{1} - z_{3})(\cos\alpha + i\sin\alpha)\cos\alpha \quad (B)$$
Since $(\cos 2\alpha + i\sin 2\alpha) = (\cos \alpha + i\sin \alpha)^{2}$
From (A): $\frac{z_{2} - z_{1}}{z_{1} - z_{3}} = (\cos \alpha + i\sin \alpha)^{2}$
From (B): $\frac{z_{2} - z_{3}}{2(z_{1} - z_{3})\cos\alpha} = \cos\alpha + i\sin\alpha$
Which, after equating gives

$$\frac{z_{2} - z_{1}}{z_{1} - z_{3}} = \left[\frac{z_{2} - z_{3}}{2(z_{1} - z_{3})\cos\alpha}\right]^{2}$$
i.e. $(z_{2} - z_{1})(z_{1} - z_{3}) = \left(\frac{1}{2}(z_{2} - z_{3})\sec\alpha\right)^{2}$

Sufficiency Statement

Score 1–4, no award	Score 5–6, Scholarship	Score 7–8, Oustanding Scholarship
Shows understanding of relevant mathematical concepts, and some progress towards solution to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception, and insight / convincing communication shown in finding correct solutions to complex problems.

Cut Scores

Scholarship	Outstanding Scholarship
21 – 33	34 – 40