$\overline{1}$

Assessment Schedule – 2021

Scholarship Calculus (93202)

Evidence Statement

(e)
\nArea =
$$
2 \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx
$$

\n
$$
= 2[-\cos x - \sin x]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}
$$
\n
$$
= 2\left(\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}\right) = \frac{8}{\sqrt{2}} = 4\sqrt{2}
$$
\nAlternative solution:
\n
$$
\int_{0}^{2\pi} |\sin x - \cos x| dx =
$$
\n
$$
\int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx + \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) dx
$$
\n
$$
= [\sin x + \cos x]_{0}^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} + [\sin x + \cos x]_{\frac{5\pi}{4}}^{2\pi}
$$
\n
$$
= \left(\frac{2}{\sqrt{2}} - 1\right) + \left(\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}\right) + \left(1 + \frac{2}{\sqrt{2}}\right) = \frac{8}{\sqrt{2}} = 4\sqrt{2}
$$

(d)
\n
$$
\ln f(x) = \sin x \times \ln(x^2 + 1)
$$
\n
$$
\frac{f'(x)}{f(x)} = \cos x \times \ln(x^2 + 1) + \frac{2x \times \sin x}{x^2 + 1}
$$
\n
$$
f'(x) = (x^2 + 1)^{\sin x} \times \left[\cos x \times \ln(x^2 + 1) + \frac{2x \times \sin x}{x^2 + 1}\right]
$$
\n
$$
f'\left(\frac{\pi}{2}\right) = \left(\left(\frac{\pi}{2}\right)^2 + 1\right)^{\frac{1}{2}} \times \left[0 + \frac{\pi}{\left(\frac{\pi}{2}\right)^2 + 1}\right] = \pi
$$
\n(e)
\nSince $\log x$ increases uniformly on (0, **2**), let $\log_2 x = A$.
\nThen $f(A) = A^2 + 6mA + n$ and $f'(A) = 2A + 6m$, which has a min when $A = -3m$.
\nSo, $f(x) = (\log_2 x)^2 + 6m(\log_2 x) + n$ has a minimum when $\log_2 x = -3m$.
\n
$$
\log_2 \frac{1}{8} = -3m
$$
 and $-3 = -3m$ or $m = 1$
\nSince $f\left(\frac{1}{8}\right) = -2$,
\n $-2 = 9 - 18 + n$
\n $n = 7$
\nAlternate solution.
\n
$$
\frac{d}{dx}(\log_2 x) = \frac{1}{x \cdot \ln 2}
$$
\n
$$
\frac{df(x)}{dx} = 2\log_2 x \cdot \frac{1}{x \cdot \ln 2} + 6m \cdot \frac{1}{x \cdot \ln 2}
$$
\n
$$
x = \frac{1}{8} \cdot \frac{-6}{\frac{1}{8} \ln 2} - \frac{6}{\frac{1}{8} \ln 2} - \frac{6}{\frac{1}{8} \ln 2} - \frac{6}{\frac{1}{8} \ln 2} - 2 = (-3)^2 + 6(1)(-3) + n \rightarrow n = 7
$$

 \mathbf{r}

 $\overline{1}$

Alternate solution : If the initial investment is correct then, $\int_0^{10} dt = \int_{76000}^{500000} \frac{1}{0.16A+D}$ $\int_{76000}^{500000} \frac{1}{0.16A+D} dA$ LHS is clearly 10 Consider the RHS $t = \frac{1}{0.16} \Big[\ln \Big(16A + D \Big) \Big]_{76000}^{50000}$ 500000 $=\frac{1}{0.16} \Big[\ln \Big(16 \times 500000 + 5000 \Big) \Big] - \Big[\ln \Big(16 \times 76000 + 5000 \Big) \Big]$ $= 70.9400 - 60.9396$ $= 10.0004$ Which is about 3.5 hours more than ten years. The initial deposit of \$76000 will be sufficient. $(b)(i)$ $\frac{dy}{dx} = (x-1)y^3$ $\int y^{-3} dy = \int (x-1) dx$ $-\frac{y^{-2}}{2} = \frac{x^2}{2}$ $\frac{x}{2}$ – *x* + *c* At $x = 0$ $y = a$: $c = -\frac{1}{a}$ 2*a* 2 $y^{-2} = -x^2 + 2x + \frac{1}{x^2}$ *a* 2 $-\frac{1}{2}$ $y = \pm \left(\frac{1}{2} \right)$ $\left(\frac{1}{a^2} - x^2 + 2x\right)$ ⎞ \overline{a} Which, when graphed for $a \neq 0$ would give: \overline{a} $-a$ However, since $a > 0$, we consider only the positive root; hence the function required is: $-\frac{1}{2}$ $y(x) = + \left(\frac{1}{a^2} - x^2 + 2x \right)$ \overline{a} \overline{a} (ii) For *a* finite and positive, the condition $\frac{1}{a^2} - x^2 + 2x > 0$ or $x^2 - 2x - \frac{1}{a^2} < 0$ must be satisfied for a *real* domain to exist. The quadratic has roots $x = 1 \pm \sqrt{1 + \frac{1}{x^2}}$. *a*2 ⎛ λ The natural domain of $y(x)$ *is* $\left(1 - \sqrt{1 + \frac{1}{a^2}}, 1 + \sqrt{1 + \frac{1}{a^2}}\right)$ \int $\overline{\mathcal{N}}$ *a*2

⎛ ⎞ 1 Range:As *x* → 1∓ 1+ ⎟, *y*(*x*) → +∞ . ⎜ *a*2 ⎝ ⎠ *^x*² [−] ²*^x* [−] ¹ The minimum value of *y*(*x*) occurs at the turning point of , *a*2 −1 −1 [≤] *^y*. *^y* [≥] *^a* ⎛ 1 ⎞ ⎛ 1 ⎞ 2 2 i.e. when *x* = 1 and i.e. *y*(1) = 1+ .The range is 1+ 2 . ⎜ ⎜ *a*2 *a*2 ⎝ ⎠ ⎝ ⎠ 1+ *a* −1 ² ⎡ ⎤ (iii) −1 *^a*² [−] *^x*² ⁺ ²*^x* [⎛] 1 ⎞ ⎢ ⎥ = −*x*² lim*^a*→+[∞] (+ 2*x*) 2 ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎢ ⎥ ⎣ ⎦ Which is defined if 2*x* – *x*² > 0, i.e., as , the domain approaches 0 < *x* < 2. *a* → +∞ The range: As and as . The minimum value will occur when –*x*² + 2*x* takes on its *x* → 0⁺ , *y*(*x*) → +∞ *x* → 2[−] , *y*(*x*) → +∞ −1 2 max value, which is when *x* = 1 and *y*(1) = + −1 (+ 2 ×1) ² = 1.

(c)
\n
$$
T_{1} = \frac{3}{2} = 1 + \frac{1}{1 \times 2} = 1 + 1 - \frac{1}{2}
$$
\n
$$
T_{2} = \frac{7}{6} = 1 + \frac{1}{2 \times 3} = 1 + \frac{1}{2} - \frac{1}{3}
$$
\n
$$
\vdots
$$
\n
$$
T_{2021} = \frac{2021 \times 2022 + 1}{2021 \times 2022} = 1 + \frac{1}{2021 \times 2022} = 1 + \frac{1}{2021} - \frac{1}{2022}
$$
\nTherefore\n
$$
\sum_{n=1}^{2021} T_{n} = 2021 + 1 - \frac{1}{2022} = \frac{2022^{2} - 1}{2022} \text{ or } \frac{2021 \times 2023}{2022} = 2021 \frac{2021}{2022}
$$
\nOr in general:
\n
$$
\sum_{r=1}^{n} \sqrt{1 + \frac{1}{r^{2}} + \frac{1}{(r+1)^{2}}} = \sum_{r=1}^{n} \sqrt{\frac{r^{2}(r+1)^{2} + (r+1)^{2} + r^{2}}{r^{2}(r+1)^{2}}}
$$
\n
$$
= \sum_{r=1}^{n} \sqrt{\frac{(r^{2} + r + 1)^{2}}{r^{2}(r+1)^{2}}}
$$
\n
$$
= \sum_{r=1}^{n} \sqrt{\frac{(r^{2} + r + 1)^{2}}{r^{2}(r+1)^{2}}}
$$
\n
$$
= \sum_{r=1}^{n} \sqrt{\frac{(r^{2} + r + 1)^{2}}{r^{2}(r+1)^{2}}}
$$
\n
$$
= \sum_{r=1}^{n} \sqrt{\frac{1 + \frac{1}{r(r+1)}}{r(r+1)}} = \sum_{r=1}^{n} \left(1 + \frac{1}{r} - \frac{1}{r+1}\right)
$$
\nSince\n
$$
\sum_{r=1}^{n} \left(1 - \frac{1}{r^{2} + r + 1}\right)
$$
\n
$$
= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}
$$

Alternate solution.
\nAB = AC so
\n
$$
|z_2 - z_1| = |z_1 - z_3|
$$
 and
\n $arg(z_2 - z_1) - arg(z_1 - z_3) = 2\alpha$
\nTherefore
\n $z_2 - z_1 = (z_1 - z_3)(cos 2\alpha + i sin 2\alpha)$ (A)
\nIn the given triangle
\n $\overrightarrow{BC}^2 = \overrightarrow{AC}^2 + \overrightarrow{AB}^2 - 2\overrightarrow{AC} \cdot \overrightarrow{AB} \cdot cos(180^\circ - 2\alpha)$
\n $\overrightarrow{BC}^2 = 2\overrightarrow{AC}^2 - 2\overrightarrow{AC}^2(-cos 2\alpha)$
\n $\overrightarrow{BC}^2 = 2\overrightarrow{AC}^2(1 + cos 2\alpha) = 4\overrightarrow{AC}^2 cos^2 \alpha$ and $\overrightarrow{BC} = 2\overrightarrow{AC}cos\alpha$
\nSo: $|z_2 - z_3| = 2|z_1 - z_3|cos\alpha$ and
\n $arg(z_2 - z_3) - arg(z_1 - z_3) = \alpha$, which gives
\n $z_2 - z_3 = 2(z_1 - z_3)(cos\alpha + i sin\alpha)cos\alpha$ (B)
\nSince (cos 2α + isin 2α) = (cosα + isinα)²
\nFrom (A): $\frac{z_2 - z_1}{z_1 - z_3} = (cos\alpha + i sin\alpha)^2$
\nFrom (B): $\frac{z_2 - z_3}{2(z_1 - z_3)cos\alpha} = cos\alpha + i sin\alpha$
\nWhich, after equating gives
\n $\frac{z_2 - z_1}{z_1 - z_3} = \left[\frac{z_2 - z_3}{2(z_1 - z_3)cos\alpha}\right]^2$
\ni.e. $(z_2 - z_1)(z_1 - z_3) = (\frac{1}{2}(z_2 - z_3)sec\alpha)^2$

Sufficiency Statement

Cut Scores

