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QUESTION ONE

(a)	 Consider the curve y = 2x2 +1
3x2 − 4x − 2

, which is shown below.
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	 (i)	 Find the coordinates of any stationary points on the curve, and determine their nature.
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	 (ii)	 Find the value of lim
x→∞

2x2 +1
3x2 − 4x − 2

.

	 	 Hence, find the coordinate(s) where the curve intersects its own asymptote(s).
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(b)	 For what real value(s) of α does the following system of equations have no real solutions?

		  x3 + y3 = 2

		  x + y = α
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(c)	 A landscaper is building steps up one side of a 
48 metre high hill. 

	 The slope of this side of the hill can be 
modelled by the curve

		  y = kx2(126 – x)

	 where both x and y are in metres and k is a 
constant to be determined.

	 Building regulations state that each step needs 
to have a minimum depth of 280 mm and a 
maximum height of 190 mm, as shown.

	 If the landscaper chooses to build each step 
with a depth of 280 mm, would the steps all 
satisfy the maximum height regulations?

	 You must use calculus to support your answer.
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QUESTION TWO

(a)	 For any two functions f and g defined on an interval, 
a ≤ x ≤ b, the max value function is defined as:

		
max( f ,g) = f (x) if f (x) g(x)

g(x) if f (x) < g(x)

	 To demonstrate, an example is shown opposite.

The max value function can be applied to more than 
two functions in a similar manner.

	

Consider the function h(x) = max 2 x ,2x,x2( )
on the interval 0 ≤ x ≤ 3.

	
Evaluate the definite integral h(x) dx

0

3
∫ .

x

y

max (f,g)

f (x)

g (x)
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(b)	 Given that
 

dy
dx

= 1+ y2 , find the value of M for which d
3y
dx3

= M 1+ y2( ) 1+ 3y2( ).
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(c)	 For any real number x, the absolute value of x is defined as:

		
x =

–x if x < 0
x if x 0

	 Consider the function sn(x) = |x – 1| + |x – 2| + ... + |x – n| with n > 2.

	
(i)	 Find s3′

5
2

⎛
⎝⎜

⎞
⎠⎟
, the derivative of s3(x) evaluated at x =

5
2
.

	 (ii)	 Find the minimum value of s2024(x).

		  Justify your answer.
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QUESTION THREE

(a)	 Find the exact value of cos2x
cos2 x

dx.
0

4
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https://www.flickr.com/photos/
nycedc/4691066745

(b)	 Alice takes a ride at an amusement park that involves 

	 •	 five spinning teacups that rotate on circular saucers 

	 •	 a circular platform that rotates around a large teapot 
at its centre.

	 The coordinates of Alice’s motion in the xy-plane (shown 
as point A in the diagram below) can be described by the 
parametric equations:

	

x = 4cosθ + cos4θ
y = 4sinθ + sin4θ

	 where θ is the anti-clockwise angle shown.

teacup A

teapot

θ

y

x

	 (i)	 Find the coordinates in the first quadrant where Alice is closest to the teapot.

		  Justify your answer.
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	 (ii)	 Find the distance Alice travels in one complete rotation around the teapot.

	 	 Note: when a curve is defined parametrically by the equations x = f (θ) and y = g (θ) on an 
interval α ≤ θ ≤ β, we can find its length, L, by using the formula:

			 
θ

θθ
L =

dx
d

2

+
dy
d

2

d
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(c)	 In 2023, two American high-school students discovered a new proof of the Pythagorean Theorem 
using trigonometry. In this question we will work through the key steps to derive their result.

	 The students’ proof makes use of the diagram below, which consists of an infinite number of 
similar right-angled triangles enclosed within a large right-angled triangle. It was referred to by 
the students as a “waffle cone”.

	 Note: to avoid circular logic, you should not make use of the Pythagorean Theorem or any of the 
Pythagorean trigonometric identities at any step in your working for this question.
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	 (i)	 Show that c2 = 2ab
sin2α

.
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	 (ii)	 Show that u =
2abc
b2 − a2

 and find a similar expression for v.

		  Hence, prove that a2 + b2 = c2.

	 	 Hint: the following formulae will prove useful:

			 
Tn = T1r

n−1 Sn = T1
1− rn

1− r
⎛

⎝
⎜

⎞

⎠
⎟
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QUESTION FOUR

(a)	 Consider all the complex numbers z that satisfy all of the following three conditions:

	

•
3

arg(z)
3

• z + z 4
• z 2

	 Find the exact area of the region generated in an Argand diagram by the locus of points that 
represent z.

	 Use the Argand diagram below to support your working.
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(b)	 If z = cos + isin and 0
2
, prove the following:

	 (i)	 1
1− zcosθ

= 1+ icotθ

	 (ii)	 2 arg (z + 1) = arg (z)
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(c)	 The point P (2p, p) is some point on the line y = 1
2
x where p ≥ 0.

 
	 (i)	 Consider the locus of points that are the same distance from P as they are from the line 

y = –2x.

	 	 Explain why this locus is a parabola AND clearly describe its key features. 

	 	 Note: you do not need to find the equation of the parabola.

	 (ii)	 Consider another point Q (q,–2q) on the line y = –2x where q ≤ 0.

		  Let R be the region enclosed by the locus of points that are three times as far from P as 
they are from the point Q. 

		  Now suppose the points P and Q are moving along their respective lines.

		  If p is increasing at a rate of 3 cm s–1, and q is decreasing at a rate of 2 cm s–1, at what rate 
is the area of the region R increasing when P is (6,3) and Q is (–4,8)? 
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