
936011

Scholarship 2021
Technology

S9 3 6 0 1

TOP SCHOLAR

No part of the candidate evidence in this exemplar

material may be presented in an external assessment

for the New Zealand Scholarship award.

TrapApp

A Crowd-Sourced Electronic Trap Monitoring System

With thanks to

 of Predator Free 2050

Professor of the University of Auckland

, my technology teacher

Spark NZ

2021

 TrapApp: Abstract

1

1 TABLE OF CONTENTS

2 Abstract ... 2

3 Background ... 2

3.1 Our unique environment 2

3.2 What we’re doing ... 2

3.3 How we’re doing it ... 2

3.4 Moving towards 2050 3

4 Proposed Solution .. 3

4.1 Automatic traps ... 3

4.2 Remote trap sensors 3

4.3 Chosen direction .. 4

5 Stakeholder Analysis .. 4

6 Further Research of Context 4

6.1 Scientific consensus on wireless trap

monitoring .. 4

6.2 Environment .. 5

6.3 Trap dimensions and details 5

6.4 Deployment of traps and nodes 5

7 Brief ... 6

7.1 System overall .. 6

7.2 Hardware (node) ... 6

7.3 Software ... 6

8 Analysis of Existing Devices 7

8.1 Table of existing wireless trap monitoring

devices 7

8.2 How we can be better 7

9 Research and Design, Pre-Concept Stage 8

9.1 Node hardware .. 8

9.2 Some reference photos (mood board) 16

9.3 Node full Bill of Materials (BOM) 17

9.4 Software: node firmware 18

9.5 Software: app ... 20

9.6 Software: server ... 20

10 Stakeholders .. 21

11 Concepts .. 21

11.1 Trap concept 1 ... 21

11.2 Trap concept 2 ... 22

11.3 Detector switch: Victor rat trap 23

11.4 Detector switch: DOC200 microswitch design

 23

11.5 Detector switch: DOC200, reed switch design

 23

11.6 System architecture concept 24

12 Development Drawings 24

13 Modelling and Development 26

13.1 Cardboard modelling 26

13.2 Caddy .. 26

13.3 Sheet steel housing 27

13.4 Electronics .. 32

13.5 Server software .. 40

14 Stakeholder Feedback, Round 1 42

14.1 Predator Free 2050 () 42

14.2 Prof. 42

15 Development Drawings, Stage 2 42

15.1 Findings and changes from client feedback42

15.2 Other changes .. 43

15.3 Drawings .. 43

16 Spark’s LoRaWAN Network 44

17 Working Proof of Concept 44

17.1 Goal ... 44

17.2 Hardware .. 44

17.3 Node firmware ... 45

17.4 Testing and debugging 45

17.5 Video demonstration 46

18 Full Prototype ... 46

18.1 Node hardware ... 46

18.2 Node firmware ... 52

18.3 Server software .. 52

18.4 App.. 53

18.5 App ... 54

18.6 Detector Switch .. 55

19 Testing in Environment 55

20 Stakeholder Feedback, Round 2 56

21 Sustainability .. 56

21.1 Sheet steel .. 56

21.2 PLA (polylactic acid) 56

21.3 Battery (NiMH, D-cell) 56

21.4 Fibreglass circuit boards 57

22 Evaluation and Moving Forward 57

22.1 Fitness for purpose 57

22.2 Improvements .. 57

22.3 Moving forward.. 57

23 Reflection.. 57

24 References .. 58

25 Professor ’s Final Feedback 59

 TrapApp: Abstract

2

2 ABSTRACT

Aotearoa’s native species are under threat from

introduced mammalian predators – specifically the rat,

possum, and stoat. Trapping is an effective tool to

combat these species, but it is highly labour-intensive.

Wireless trap monitoring systems are proven to be

effective at reducing maintenance costs of these trap

networks, if the sensor cost is low enough. Sprung traps

in public areas could be displayed publicly via an app,

allowing volunteers to reset them. This behaviour could

be promoted by gamification and social media

techniques. I have created such a system, which

performs comparably to existing commercial options

and has a BOM cost well below the threshold for

economic viability. I implemented the foundations of

the public, app-based volunteering system. In the

future, these features could be completed and extended.

The system was designed to be modular, extensible, and

easy for the average consumer to set up – New Zealand

is more than just wild bush, so our trapping efforts need

to target the whole country.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

3 BACKGROUND

3.1 OUR UNIQUE ENVIRONMENT
Aotearoa rightly has an international reputation for

incredible scenery, wildlife, and culture. Native forests,

grasslands, and mountains cover 47% of our country,

and are home to thousands of endemic species. This

taonga earned New Zealand 41 billion dollars through

tourism in 2019, which directly employed around 8.4%

of our working population. Tourism’s status as a

cornerstone of our economy has only been highlighted

by the impact of COVID – when the world can fly back

here, we need to ensure our that our natural beauty has

survived.

Our most famous native species are birds like the Kiwi,

but we also have hundreds or thousands of unique

insects and plants. Many of these are at significant risk

of extinction due to introduced mammalian predators

(IMPs) - namely rats, mustelids (stoats, ferrets), and

possums. Already, at least 75 species of plants and

animals have become extinct since New Zealand was

settled. 74% of native terrestrial birds are classified as

threatened with, or at risk of, extinction (Ministry for

the Environment & Stats NZ, 2019).

A hit to nature is a hit to tourism – our visitors

overwhelmingly come here to experience our beautiful

landscapes and species. A hit to tourism is a hit to the

economy, which negatively affects us all.

Economic gains certainly aren’t the only reason to save

our species. Aotearoa is home to many diverse and

unique cultures, but one thing we all have in common is

a love of the land, and a desire to maintain it.

To Māori, the land is much more than a resource – it is

a connection to whakapapa, to ancestors, to gods and

wairua (Timoti, Lyver, Matamua, Jones, & Tahi, 2017).

Māori quickly recognised that humans have an impact

on the environment and implemented conservation

devices like the rāhui – a temporary restriction on the

use or exploitation of an area (Royal, 2007). The

Pākehā, too, learned to value the land – this even is

reflected in the stereotypical ‘Southern Man’, who lives

isolated among nature, caring for his land and sheep.

If we lose our natural flora and fauna, our many cultures

are all degraded.

Pests also carry disease and cause harm to agriculture.

For example, possums spread bovine tuberculosis.

Infections necessitate culling of entire herds of cattle, up

to around 1 million per year (Stock, 2018). The disease

can also infect humans.

3.2 WHAT WE’RE DOING
In 2016, the government committed to the Predator

Free 2050 plan, with the goal of eradicating all

introduced mammalian predators by the year 2050. It

is generally accepted that new scientific and

technological developments will be essential to achieve

this goal (Norton, et al., 2016). Before discussing these

novel technologies, it is important to understand the

existing methods of pest elimination.

3.3 HOW WE’RE DOING IT
Poisoning, also called baiting, is an effective and proven

technique for pest suppression, but not full eradication

(remember, Predator Free 2050 aims to eradicate all

IMPs, not just suppress them). Poison may be deployed

aerially (often from helicopters), or from ground bait

stations.

The most common poison is 1080, of which New

Zealand uses around 80% of the world’s supply. 1080

works on all the target IMPs, though is also poisonous

to dogs and other mammals. Techniques for aerially

dropping 1080 have been extensively studied, meaning

it is now known to be an effective and cheap tool for pest

suppression across large areas. Again, this is not the full

elimination which we aim to reach but is a valuable

starting point. Ground application of poisons such as

1080 and brodifacoum is also used, though this is not

often economically viable where aerial application could

be used (Environmental Protection Agency NZ, 2006).

A single aerial drop of 1080 poison can clear 98% of

possums and 90% of rats in a targeted area (Forest and

Bird, 2018). Since 1080 can’t be used everywhere, and

doesn’t fully eliminate predators, other pest control

methods – primarily traps – are essential.

Many types of traps exist. The most common designs

consist of a ‘trap mechanism’ (the conservation

equivalent of a domestic rat/mouse trap) inside a

wooden tunnel. The tunnel prevents unwanted species

https://www.youtube.com/watch?v=oHxw4lMh9e4
KathleeF
Highlight

KathleeF
Highlight

 TrapApp: Proposed Solution

3

from accessing the trap and forces the target species to

approach from the desired direction. Traps are usually

placed in ‘lines’, with each trap between 50m and 200m

from the last, depending on primary target species.

Lines are spaced <100m - 1km apart, depending on

target species. Traps lines are checked and reset every 1

to 4 weeks. This is a highly labour-intensive process,

requiring a lot of time and to be repeated regularly.

Many can only be accessed on foot, though all-terrain

vehicles (ATVs) are also used (DOC, 2021). There is also

a suggestion that a ‘hot trap’ effect may exist, where

pests will be more attracted to a trap soon after another

pest visited it. If traps were reset faster, then the hot trap

effect would allow for quicker recaptures, and

exponentially more pests caught.

The fundamental issue with traps is that human

resetters never turn up at the right time – we always

come too late, leaving the trap out of action for a while,

or we waste resources visiting traps too early, before a

kill has been made.

3.4 MOVING TOWARDS 2050
Clearly, trapping is an essential part of New Zealand’s

predator elimination effort, and will continue to be – in

fact, as we shift from suppression (which is achievable

with only poisons) to eradication, trapping will become

even more important. However, trapping is currently

extremely expensive compared to other pest control

methods. The bulk of this cost comes from constantly

checking and resetting these traps. For this reason,

technological advances concentrating on reducing trap

management workload are promising and would likely

have practical applications towards achieving New

Zealand’s Predator Free 2050 goal.

4 PROPOSED SOLUTION

4.1 AUTOMATIC TRAPS
There are already a great many types of manual trap,

designed for different applications against different

species. One potential improvement to traps is to make

them reset themselves automatically. Such automatic

traps do exist in limited capacity today.

However, they are quite expensive and new to market.

This means they have nowhere near the years of testing

and refinement that manual traps do. There are

currently two self-resetting traps in development or on

the market - the GoodNature A12/24, and the NZ

Autotraps AT220. There is very limited research about

these traps, and no consensus on their efficacy.

Both of these rely on relatively pricey chemical lures,

compared to simple and cheap peanut butter, eggs, and

waste meat, which are widely used in manual traps. The

GoodNature traps also use disposable CO2 cartridges,

which cost money and generate waste.

Another issue with these traps is one of data collection.

Achieving our Predator Free goal requires us to keep

very close tabs on what we’re catching, how often, and

where. This is easily implemented with manual

trapping, as maintainers can simply enter data on a

mobile device. Due to their novelty, existing automatic

traps have very limited collection ability. This will likely

improve in coming years; however, it will still be near

impossible for species information and other detailed

parameters to be collected.

Options for automatic traps are very limited, meaning

their use is constrained to very specific situations. For

example, they all rely on gravity to clear dead animals,

meaning they must be elevated. Automatic traps are

clearly a promising technology, but they would require

a lot more development, testing, and research to replace

our existing trap designs. On top of this development

time, replacing existing traps would be a very expensive,

and thus lengthy, undertaking. Remember, we need to

act immediately if we are to achieve our 2050 goal.

4.2 REMOTE TRAP SENSORS
Another promising option would be to upgrade these

traps with a comparatively cheap wireless monitoring

device. A chosen group of people would be alerted when

a trap is triggered, allowing both the timing and routes

of trap maintainers to be adjusted to maximise

predators caught, and minimise resources used.

Essentially, we would be able to arrive at the traps at the

correct time – not too early, not too late.

These devices do already exist but, much like self-

resetting traps, are in their early days. However, they

don’t require the extensive development and research

periods that automatic traps do, since they are

retrofitted on already-proven trap hardware.

The immense number of already-deployed manual

traps is another key factor. Remote trap-sensor devices

would be much smaller and lighter than an entirely new

trap, so carrying these into the field would be less

resource-intensive than replacing traps with self-

resetting ones. The actual cost of remote devices would

presumably be much lower than an entirely new trap. In

other words, it would be far more practical (and

cheaper) to upgrade current traps by installing remote

monitoring systems than to replace them with

automatic traps, at least until automatic trap technology

is further developed.

Gamification refers to techniques applied “to enhance

systems, services, organizations, and activities in

order to create similar experiences to those

experienced when playing games in order to motivate

and engage users” (Hamari, 2019). In other words, how

do we make people think that doing work is fun?

This may seem counterintuitive, but the technique is

widely applied already – popular examples are the ‘Snap

Score’ and ‘Streaks’ mechanics from Snapchat, and

Pokemon Go in its entirety. The app iNaturalist gamifies

the crowd-sourced documentation of plant and animal

species in the environment. A similar approach could be

 TrapApp: Stakeholder Analysis

4

taken for the resetting of traps, leading to a free

volunteer workforce.

4.3 CHOSEN DIRECTION
I will design and create a system that provides remote

monitoring capabilities to predator traps and makes

this information available to relevant people.

Some traps, especially the less dangerous ones on public

land, will be visible to the public who will provide a free

labour force to reset them. App-based volunteering will

raise public awareness of pest trapping and elimination,

creating a positive feedback loop of volunteers and

interest. Gamification and social media techniques will

be applied to encourage user participation.

This system will consist of three main components.

These are briefly broken down below:

1. The ‘node’ is the piece of hardware mounted on

each trap. It detects when the trap has been triggered

and requires resetting, then sends a radio signal to a

base station, or gateway. This gateway forwards

received signals on to a centralised server via the

internet.

Figure 1. An illustration showing 4 traps communicating
with a nearby base station (gateway).

2. The backend server receives, processes, and

stores information from each trap’s node. It provides

this data to the app, and handles app-related

functions such as logging in. This piece of software

will run on a web server.

3. The app fetches relevant data from the backend

server and displays it to the user in an interactive

manner. This piece of software runs on the user’s

phone.

5 STAKEHOLDER ANALYSIS

Several stakeholders exist for this project, as several

distinct groups have an interest in pest elimination or

reduction.

My primary stakeholder group is organisations such as

the Department of Conservation (DOC), regional

councils, and other bodies that manage large areas of

bushland or parks. In this use-case, the sensors could be

used to aid management of large expanses of difficult-

to-access bushland. These traps could be made public.

My secondary stakeholder group is private owners of

medium-large land areas, such as farmers and lifestyle

block owners. These people often have a use for pest

control, but do not have the time or resources to widely

implement it. New Zealand is more than just bushland

– if we are to eradicate all predators, we need to

consider these other types of property, and what will

work for their owners. This technology may allow them

to balance their trapping efforts with work.

My tertiary stakeholders are those who have an interest

in backyard trapping (likely in an urban area) but do not

want to invest significant time into checking traps. For

this group, the system would essentially be a novelty –

they could probably check their traps manually with

little more effort. However, plenty of items far more

useless than this are sold every day, so this stakeholder

remains. Even though the use of this technology would

not really be necessary, it may raise awareness of, and

prompt participation in, conservation volunteering

programmes.

6 FURTHER RESEARCH OF

CONTEXT

6.1 SCIENTIFIC CONSENSUS ON

WIRELESS TRAP MONITORING
Several studies have analysed the feasibility of wireless

sensor networks for trapping. A Manaaki Whenua

report (Warburton, Jones, & Ekanayake, 2015)

conducted a cost-benefit analysis and found that,

“Significant benefit-to-cost ratios can be obtained, but

these depend particularly on the price of the technology

but also on other parameter values used” – for example,

the time before the trap must be rebaited, the lifespan

of the node, etc.

Figure 2. Loss/Savings of implementing a wireless sensor
network system by node cost (Warburton, Jones, &
Ekanayake, 2015)

Clearly (Figure 2), the cost of each sensor is of chief

importance. For my device to be economical, the price

must be less than $100. Of course, the exact figures may

 TrapApp: Further Research of Context

5

have changed slightly since publication, but the point

remains – this technology is extremely price sensitive.

Another related New Zealand report again found that

this technology was economically justifiable, and that,

“in a modelled example, we estimated that operational

cost savings of up to 70% could accrue from use of

wireless sensor networks”. They also found that this

technology could be helpful for “increasing the quantity

and quality of data from wildlife monitoring studies”

(Jones, Warburton, Carver, & Carver, 2015).

An Australian study experimented with this technology

for dingo-trapping (Meek, et al., 2020). They found it:

provides a solution to checking traps daily when

the distance to and between traps cannot be

covered within an appropriate time frame.

Although trap alerts can never replace the value of

daily trap checking by the trapper, they provide a

solution to a management problem, namely, one of

accessibility to sites. (Meek et al., 2015)

This proves that the technology works in the real world.

(The NZ studies were based on simulations and

mathematical models, so it is helpful to have some real-

world evidence.)

Overall, there is good modelled and experimental

support for the use of this technology. These studies

show that it would provide cost savings, and therefore

will help us to achieve our Predator Free 2050 goal as

hoped. This indicates that it is worth pursuing further.

6.2 ENVIRONMENT
Traps are usually deployed in areas of native bush,

tussock-lands, etc. The challenges associated with such

environments are as follows.

6.2.1 Weather

It could feasibly rain, snow, hail, or flood. The node

must therefore be waterproof, and must not falsely

trigger if the detector switch gets wet. The node must

not rust, so must be made of plastic or

galvanised/painted metal.

6.2.2 Groundwater

If the trap is on or near the ground, it will become wetter

than if raised higher. If flooding occurs – even minor

surface flooding – the trap may be partially submerged.

This could be mitigated by careful installation, and

thorough waterproofing by design.

6.2.3 Vandalism and theft

This is especially likely if installed in a city, and even

more so if the location is visible publicly, via the app.

The node should be unobtrusive so as to not draw the

eye, sturdy, and possibly attached with one-way

fasteners or locked to the trap. Ensuring the node is not

reprogrammable without a special password would help

to reduce the desirability of stealing nodes. Users should

only be able to view public traps that are nearby to them

and require resetting. Other public traps will be hidden

to make finding and intentionally damaging them

difficult.

6.2.4 Animals and other mechanical
stresses

When deployed, nodes will not have an easy life in terms

of mechanical stress - they will likely be shaken while

being transported and knocked around whilst deployed

in the field. The node must therefore be sturdy and able

to resist crushing and vibration, including around the

antenna and detector switch connections.

6.3 TRAP DIMENSIONS AND DETAILS
The node will be mounted to, or nearby to, a trap. Traps

generally consist of a wooden tunnel with steel mesh on

each end, and one or more trapping mechanisms inside.

These traps vary in size and internal trapping

mechanism depending on target species and trap

model. It is therefore important that my node fits on a

broad range of traps. Practically, this means that it must

be small enough to fit on the smallest trap possible. The

switch that detects when the trap mechanism has been

triggered (‘detector switch’) must be swappable, and a

version must be produced for each trap mechanism

type.

The largest trap commonly available is the DOC250,

with dimensions 400mm long x 300mm wide x 250mm

tall.

The smallest tunnel-based trap commonly available is

the “Victor Professional trap and tunnel”, with

dimensions approximately 550mm long x 145mm wide

x 175mm tall. This means that the node should be no

larger than 145mm wide if it is to be mounted on the top

of the trap, or no larger than 145mm x 175mm in

footprint if it is to be mounted on the side. If the node is

mounted on the side of the trap, it should be raised

above the ground to prevent water ingress, so must be

smaller. I think the ideal location for the node would

therefore be on top of the tunnel, but flexibility is

desirable.

6.4 DEPLOYMENT OF TRAPS AND

NODES
The trap has several requirements to make it suitable for

transportation to the field. Traps are often carried in a

backpack to their final destination, so nodes would have

to be transportable in the same manner, preferably

nested inside the trap itself to reduce volume.

• The node should fit inside the trap’s tunnel for

easy transport to its deployment location.

• The node must be fairly light, to ensure it can be

carried. Batteries and any metal housing will

likely be the heaviest part of the node.

• As discussed before, the node must be sturdy

for both deployment and its general use.

 TrapApp: Brief

6

7 BRIEF

I will create a system which notifies relevant people,

and, in limited circumstances, the public, when a pest

trap has been triggered and requires resetting.

7.1 SYSTEM OVERALL
The product must be designed to be used and managed

in large quantities by organisations such as DOC and

Predator Free NZ, as well as in smaller quantities by

farmers and other medium-sized landowners.

The product must allow easy remote management and

receipt of notifications for large groups of traps.

The product must be as flexible as possible, allowing for

different use types such as large-scale public (e.g., urban

volunteering via the app), large-scale private (e.g., in a

national park or predator-free island), and small-scale

private (e.g., on a farm).

7.2 HARDWARE (NODE)
The product should be sustainable, repairable, designed

to last, and made of materials safe for nature.

The node must cost less than $100 in order for its use to

make economic sense.

The node should easily be attachable to a pest trap, as

well as other similar mounting points such as a tree or

fence post. This installation must be able to be

completed in situ (i.e., on a trap that is already deployed

in the bush) easily with tools that can be carried on a

person, or no tools. Practically, this means that

screwdrivers, a small hammer, and a power drill are

probably allowable.

The node should be able to wireless transmit to a base

station which may be up to several kilometres away.

It must be sturdy, weatherproof, and fit for the

environment.

The node should require maintenance only very

infrequently (other than resetting and rebaiting the

trap). This includes recharging and changing the

batteries.

The node must wirelessly report when the trap attached

to it has been triggered or reset.

7.3 SOFTWARE
The software should consist of a backend server that

stores and processes trap data and requests, and an app

that allows the user to interact with this data.

The server must store all important parameters about

the trap.

The server must have enough storage space to store

many catches, and, if a social media element is

implemented, photos and data related to this.

The server must be powerful and efficient enough to

supply clients with requested information and process

trap updates quickly.

The app should run on both Android and IOS systems.

Being able to run in a browser or as a desktop app (e.g.,

on a laptop) would be ideal as well.

The software system must allow certain traps to be

viewed and reset by public volunteers, in a manner

similar to iNaturalist and Pokemon Go. Other traps

must only be visible to select members.

The software system must be designed in such a way

that a malicious public user cannot disrupt a significant

number of traps. Offending users must be kept track of

and banned.

The software system should encourage volunteers to

continue volunteering through the use of gamification

and social media techniques.

The software system should allow for statistical analysis

and/or export of trap data, likely to external software

such as CatchIT.

 TrapApp: Analysis of Existing Devices

7

8 ANALYSIS OF EXISTING DEVICES

A number of trap monitoring systems already exist and are in use in New Zealand. The details of each of these are

summarised in the table.

8.1 TABLE OF EXISTING WIRELESS TRAP MONITORING DEVICES

Name System
architecture,
radio type

Cost per
trap
(node)

Cost per
gateway

Purported
range from
trap to
gateway. Line-
of-sight.

Battery Notes

Celium Proprietary RF
system.
Node -> central
gateway -> web
via satellite
(iridium) or
cellular.

 50km AA
batteries.
"Several
years", 8
possible.

Econode LoRaWAN $105+GST $450
(indoor),
more
for
outdoor

15km 5 years.
4x
alkaline
AA

Has temp, humidity, pH (?!), sound
pressure, movement, orientation
sensors. Nodes ‘phone home’
every few hours. Gateways are
rebadged Jaycar ones. Integrates
with arcGIS and trap.nz. Requires
drilling into metal for mounting on
DOC200.

MinkPolice 2g moving to
NB-IOT so
probably CAT-
M1

$262.00
plus GST

Not for
sale

Relies on
Vodafone NB-
IOT network

1 year.
4x
lithium
AA

Initially Dutch, NZ re-design
working on Vodafone cellular
networks.

Xtrap Sigfox

 10+
years

Gateway on pole with 40km
transmission range. Solar and wind
powered.

8.2 HOW WE CAN BE BETTER
There are obviously many trap sensor options already

available. My design will improve upon the current

options in these ways:

8.2.1 Price

None of these companies display a price for each unit on

their website, already implying that they are expensive

– and suggesting that these are not intended for the

average person. After inquiring, I found that Econode

costs $105 + GST per node, and MinkPolice costs $262

+ GST per node. Already, Econode only just breaks

even, according to the Manaaki Whenua modelling.

MinkPolice certainly does not. This doesn’t mean it is

useless – there are likely some places where it is

economical, but this cost severely limits its usefulness.

A reduction in price is quite feasible: the system can be

constructed from off-the-shelf electronic parts, which

are as ubiquitous as they are cheap. It could be produced

in New Zealand, minimising expenditure managing an

offshore factory and dealing with ‘invention companies’.

It could even be produced by volunteers, if the system is

overseen by a charitable group. More robust

competition in this emerging industry will also drive

down cost. Broadening the market appeal of this

product, such as by targeting urban individuals as well

as traditional large stakeholders, could make a business

more feasible.

8.2.2 Useability and access

None of these systems are available for purchase online

easily - a system must be inquired about, quoted on,

and, presumably, installed by an expert. As discussed in

Stakeholder Analysis (5 above), managers of large areas

of bushland are but one of three stakeholders. Again,

New Zealand is more than bushland, and our trapping

must reflect this. Targeting only large purchasers, like

these existing products do, is only a partial solution.

 TrapApp: Research and Design, Pre-Concept Stage

8

As discussed in the Brief (7 above), the system will be

designed in such a way that allows non-professionals to

install and configure their own sensors easily and

without specialised tools.

9 RESEARCH AND DESIGN,

PRE-CONCEPT STAGE

9.1 NODE HARDWARE
The node consists of several subsystems, each

corresponding to a function that the node must

perform. Some functions may require multiple linked

subsystems. Each subsystem will roughly correspond to

a discrete electronic component. First, I will list the

functions/subsystems, then discuss each subsystem in

detail.

Function Subsystem
name(s)

Wirelessly communicate with
the backend server.

Communication

Provide the rest of the node
with steady supply of
electricity.

Power

Process changes in trap state
and command the radio to
send data. “Brains of the
operation”.

Microcontroller

Locate the trap in the world, as
they may move – especially if
people steal or accidentally
move them.

GPS

Physically and electrically
connect to other components
nearby to the node, or inside
the node – for example, the
detector switch, any devices
used to configure the node,
and the battery pack.

Connectors

House and protect the node’s
delicate insides. This must be
watertight.

Housing

Detect when the trap
mechanism has been
triggered. This is external to
the node, though is connected
via the Connectors subsystem.

Detector switch

9.1.1 Communication

9.1.1.1 About the subsystem

Obviously, the node (hardware on the trap) must

communicate with the internet. There are a number of

ways that this can be done. I will go over these options

and decide on the best one.

There are several requirements for this:

• Low power consumption. The brief states that

we must minimise trap maintenance. One part

of this is maximising battery life, which can be

achieved with low power radio communication.

• High range. Lower range means that either

traps will be constrained to existing in specific

locations around the base station or will

necessitate installing extra base stations.

Neither are ideal.

• A radio system must either have very good

existing network coverage, or the ability to

deploy your own network, or a mixture of both.

9.1.1.2 To Mesh, or not to Mesh

In a normal network, several nodes communicate

directly with one gateway. This has the disadvantage of

requiring all nodes to be in range of the gateway,

requiring more gateways. This leads to more cost.

Instead, a mesh network design could be used. In a

mesh network, nodes can communicate with each other,

as well as the gateway. This means that nodes out of the

gateway’s range could pass the message from trap to

trap until it found a gateway.

Also, we must consider how traps are arranged in the

field. They tend to be in discrete lines, with 50m-200m

spacing, as discussed in 3.3 How we’re doing it above.

This means that a gateway could be placed at the end of

one of these lines, and trap-to-trap mesh

communication could be used to pass messages down

the line. If this mesh technology wasn’t used, a line

would need several gateways, which may be less cost-

effective.

Figure 3. A non-mesh "hub and spoke" network topology.

Figure 4. A mesh network. See how fewer gateways are used,
yet the effective range remains the same.

I will likely not implement a mesh network due to its

complexity. However, the capability to implement a

mesh network will be a factor in deciding what radio

system to use, since it is a potential future improvement.

I will now analyse the options for this hardware

subsystem.

 TrapApp: Research and Design, Pre-Concept Stage

9

9.1.1.3 NB-IOT (specifically CAT-M1)

NB-IOT is a subset of the familiar 4G LTE standard

(commonly used in mobile phones). NB-IOT stands for

Narrow-Band Internet of Things. Narrow-band refers

to the range of frequencies over which a single signal is

carried. The wider the bandwidth, the more data can be

carried per unit of time, but the more power used to

transmit or receive. For example, a rough phone call will

have a bandwidth of around 3KHz (3000 hertz), AM

radio has a bandwidth of about 20KHz, and FM radio

can have up to 92KHz. Normal 4G LTE has a bandwidth

of up to 20MHz (20 million hertz), normal WiFi has a

bandwidth of 22MHz, and NB-IOT (specifically CAT-

M1) has a bandwidth of 1.4MHz.

Ultimately, this means that it is a fairly low-power,

medium data-rate option. It would not be possible to

install base stations in areas where they do not already

exist in an ISP's network, as this is a proprietary radio

standard relying on restricted frequencies and closely

guarded trade secrets. Essentially, we are stuck with

whatever coverage exists already, unless we get an ISP

to improve it. This would be highly expensive.

While the range of Spark's network is fairly good, there

are large unconnected regions in national parks such as

the Hunua Ranges, and most of the Coromandel. These

are the regions where trapping is likely most wanted, so

it does not seem like a good idea to pick a

communication method that likely will never work in

many areas where traps will be deployed. The

MinkPolice sensor listed above uses Vodafone's NB-IOT

network. This system does not allow for the creation of

mesh networks.

9.1.1.4 LoRaWAN

LoRa is a long-range, low-power radio protocol

invented by SemTech with a range in perfect line-of-

sight conditions of >10km. LoRaWAN is a protocol built

on top of LoRa which allows LoRa devices to connect to

the internet via LoRaWAN base stations ("gateways").

In New Zealand it operates in the free-to-use 915MHz

frequency band, which means that anyone can set up a

LoRaWAN gateway without special permission, unlike

NB-IOT.

Spark operates a LoRaWAN network, though it is

primarily concentrated in urban areas – providing

coverage in bushland is probably not economical for

them. There is an international collection of hobbyists

who operate a shared network of free-to-use LoRaWAN

gateways called The Things Network (TTN). The

coverage of TTN is quite poor in New Zealand, however

it shows that a LoRaWAN network is easy enough to set

up for the average technically-minded person. This

means that a similar network could be established to

provide coverage to traps in regions not already serviced

by Spark's LoRaWAN.

LoRaWAN gateways are relatively cheap: A very basic

type that can only receive a signal from one device at a

time is less than $100 (excluding solar power, internet

connection, etc). A more advanced fully-LoRaWAN-

compliant type is upwards of $500, again excluding

utilities. Gateways deployed could access the internet

via LTE, 3G, satellite, or wired connection.

Since LoRaWAN is built on the point-to-point protocol

LoRa, the hardware used for these protocols is identical.

This means a LoRaWAN radio could be used to send

normal LoRa packets from node to node, implementing

a mesh network.

In the city, where LoRaWAN networks are already

established by bodies such as Spark, establishing a

network of connected traps, such as for the publicly-

accessible social media component, would be as easy as

distributing nodes and traps then connecting these to

the local network. The Econode trap already uses

LoRaWAN, though it is not clear what connectivity they

use – when I enquired, it was suggested that I try TTN,

though this isn’t really a good option coverage-wise. I

suspect that they use a similar approach of utilising

existing networks where available and building their

own in other places.

The bandwidth of LoRaWAN is more complicated than

CAT-M1 as it varies on-the-fly. It is on the order of a few

hundred kilohertz, much lower than that of CAT-M1.

LoRa achieves such high range at such low power by

reducing the data rate (and therefore bandwidth) to

almost nothing. This is fine, however, as a node only

needs to send small amounts of information.

9.1.1.5 Sigfox

Sigfox is a radio system similar to LoRaWAN, with a

fixed bandwidth of 200KHz and an ideal range of 30-

50km in perfect rural conditions. Sigfox, the company,

maintains a global Sigfox network which covers more of

New Zealand than Spark's LoRaWAN network, but

cannot be extended with private base stations without

the cooperation of Sigfox. This means that connectivity

is limited to whatever is already provided by Sigfox, like

with NB-IOT. The Xtrap system uses Sigfox and "Sigfox-

on-a-Pole" gateways, meaning that they pay Sigfox for

the rights to deploy a Sigfox network. This is better than

NB-IOT, however still not an ideal solution.

9.1.1.6 Custom radio

There is no inherent requirement for me to use an

existing radio system. The company Celium took this

approach. Their proprietary radio protocol can reach up

to 50km, and still run off batteries for "several years".

However, this approach would realistically require the

expertise of an electrical engineer (or many) and would

take far longer than I have to complete this project. For

this reason, I will opt to use an existing radio solution.

9.1.1.7 Deciding on a radio system

To ensure that the system works anywhere in New

Zealand and can be set up by a layperson, I require a

radio system that can be extended freely and easily. This

eliminates Sigfox and NB-IOT, because these rely on

proprietary infrastructure set up by another company.

Therefore, the only good, long-range, low-power option

open to me is LoRaWAN. This is proven to be capable

by Econode’s use of it.

 TrapApp: Research and Design, Pre-Concept Stage

10

9.1.1.8 Choosing a hardware module

There are a huge variety of LoRaWAN 'modules' -

premade circuit boards that implement all of the

hardware required for LoRaWAN and can easily be

connected to a microcontroller. It is important that the

LoRaWAN module I choose is powerful enough to

connect to a base station at a decent range. For this, I

must discuss the physics behind radio transmission

power.

LoRaWAN in New Zealand operates at the AU915

frequency standard, meaning the transmission

frequency is around 915MHz. There are legal limits to

transmit power, defined as the maximum EIRP

(Effective Isotropic Radiated Power, measure of the

actual power radiated from an antenna). For the

915MHz range, the maximum legal EIRP is 0.0 dBW.

The dBW (decibel-watt) is a logarithmic scale of power,

where a lower number is less power. dBm (decibel-

milliwatt) is a similar scale which measures the same

quantity but is more often used for radio calculations.

0.0 dBW = 30.0 dBm, so this is my maximum EIRP.

A 3 dBm increase approximately corresponds to a

doubling of range as this, too, is a logarithmic scale.

To calculate EIRP, the following formula can be used:

𝐸𝐼𝑅𝑃 = 𝑃𝑡 + 𝐿𝑐 + 𝐺𝑎, where 𝑃𝑡 is the transmitting power

of the radio, 𝐿𝑐 is the signal loss from cables and

connections, and 𝐺𝑎 is the antenna gain - essentially,

how much the antenna amplifies the signal, which is

measured in dBi. For the following calculations, I will

assume ideal conditions, therefore Lc = 0.

The initial options I found for radios are shown below:

Name Radio

transmit

power

(dBm)

Claimed

line-of-

sight

range

EIRP

(5dBi

antenna)

Legal?

Ebyte

E32-

915T30D

21-30 8Km 35 Not

without

turning

power

down

Ebyte

E32-

915T20D

10-20 3Km 25 Yes, 5

dBm

under

If I was to choose the 30 dBm model, I would have to

turn down the power to ensure the system is legal. This

is better than buying a radio which is 5 dBm lower than

it can be, given that 3 dBm is double the distance. In

watts, a linear scale, 30 dBm = 1W but 25 dBm = 0.31W.

This is clearly a huge difference.

Therefore, I planned to use the Ebyte E32-915T30D

915MHz LoRa radio. This radio connects to the

microcontroller through UART serial, a simple 2-wire,

bi-directional wired communication protocol. The

antenna connects via a SMA-K plug. The radio runs on

5V and draws 660mA when transmitting.

Unfortunately, I discovered that this option would not

work. There is a plethora of LoRa radio modules (such

as the EBYTE range), though they are all based on one

of three integrated circuits made by SemTech (the

inventor of LoRa): the SX1272/6/8.

The Ebyte LoRaWAN modules listed above are indeed

based on the SemTech chips, however they connect to

the main microcontroller via UART instead of SPI as is

standard for SX127X chips, indicating that they have a

custom built-in microcontroller interface. They are

therefore not compatible with any of the existing LoRa

software libraries, so cannot easily be used for

LoRaWAN as is required for this product. These two

topologies are described in Figure 5 below.

Figure 5. Interfaces between devices in EBYTE module (top),
and a SX127X (bottom). Finesse and control are lost in the
UART interface, making LoRaWAN impossible.

Therefore, I will need to use a LoRaWAN module which

does not have a microcontroller interface – I must

communicate directly with the SX127X chip.

Only a minority of these LoRaWAN modules exist in

915MHz versions, which are required to connect to

existing New Zealand infrastructure.

Figure 6. An RFM95W, based on the SX1276

Two promising modules are the RFM95W or RFM95C

by HopeRF, as pictured in Figure 6. Both are based on

the SX1276, with the only difference being a metal 'can'

which shields the C version from RF interference. Both

output 20 dBm of transmit power and run off 3.3V.

RFM95 modules are very small, require an antenna to

be soldered on directly, and have non-standard spacings

between the pin connections. This necessitates a

 TrapApp: Research and Design, Pre-Concept Stage

11

breakout board - a small circuit board which converts

the pins to standard spacing and adds an SMA

connector for the antenna. These are not readily able to

be purchased fully made, but the board, connector, and

pins can be bought or made separately, then assembled.

Figure 7. An RFM9x breakout board, designed by GitHub
user attexxx. I will use his open-source design.

I will use an RFM95W, with attexx’s breakout board

design.

9.1.1.9 Antenna

All radio systems require antennae, whether to transmit

or to receive. Antennae are designed for a specific radio

frequency. In New Zealand, LoRaWAN operates around

915MHz (or 923MHz), so I will need an antenna tuned

to these frequencies. As discussed earlier in EIRP

calculations, the antenna provides an apparent gain.

This is not free energy. Instead, the antenna

concentrates the already-existing energy away from

some areas in space, and towards others. My node and

gateway are likely to be at roughly the same elevation –

certainly not vertically above one other. This means that

energy can be diverted from the vertical axis, and

towards the horizontal, providing an apparent gain.

Figure 8. A diagram showing radiated power of a whip
antenna mounted vertically.

As shown in Figure 8 above, a whip antenna has the

desired radiation characteristics. They are commonly

used in LoRaWAN for this reason.

A prevalent and cheap option is a 915MHz 5dBi (gain)

whip antenna with an SMA connector. I will use this.

Figure 9. The chosen whip antenna.

9.1.2 Power

All existing remote monitoring systems, as well as

automatic traps such as the AT220 and A12/24, run on

batteries which must be replaced at an interval of

months or years.

9.1.2.1 Solar panels?

On the surface, solar power appears to be a promising

option – they could allow the trap to run unmaintained

for longer.

However, these nodes are primarily going to be

deployed on the forest floor where only a small amount

of light reaches this point, so the panel must be able to

charge the battery on nearly nothing.

Unfortunately, all solar power controllers at a price

point compatible with this project do not function well

in low light. Electrical engineer Andreas Spiess

experiments with several solar charge controllers in a

YouTube video (Spiess, 2017). None of the affordable

options tested by him would be useful in my low-light

scenario.

Therefore, I will not use solar power.

9.1.2.2 Power storage

Since I do not need the capability of recharging the

batteries while deployed in the trap, I will conform to

the established practice (in existing trap monitoring

systems) of using packs of rechargeable or replaceable

NiMH or alkaline batteries, which can easily be

swapped.

These batteries also have the advantage of a higher

power density over Lithium-ion, which I would likely

use if the goal was to use solar power (see Figure 10).

TrapApp: Research and Design, Pre-Concept Stage

12

Figure 10. Energy density by battery type

9.1.2.3 Power regulation

9.1.2.3.1 Why regulate?

The microcontroller, radio, and other electronic

components all require an accurate and constant

voltage. If this voltage is too low, they will not function

correctly. If it is too high, they will be permanently

damaged.

The chosen components require a 3.3v supply. Each

battery cell typically has a voltage of 1.5v charged, and

1v discharged. To keep the battery voltage above the

required 3.3v even when flat, a minimum of 4 battery

cells must be used. This means a fully charged voltage

of 6v, and a flat voltage of 4v.

Therefore, I will need a voltage regulator to reduce the

'raw' voltage of the battery to 3.3v. There are two types

of DC-DC voltage regulators: Linear and switching.

9.1.2.3.2 Linear regulators

Linear regulators are simple and cheap but are quite

inefficient: the proportion of power corresponding to

the dropped voltage is lost as heat. The efficiency of

these regulators η can be approximated by the following

formula:

η =
Vout

Vin

In this case, 𝑉𝑖𝑛 is at most 6V, and 𝑉𝑜𝑢𝑡 is always 3.3V.

Therefore, the worst-case efficiency of a linear regulator

is in this application η =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
  =

3.3

6
= 0.55.

This is not good. While the efficiency would increase as

the battery discharges (𝑉𝑖𝑛 decreases, so the directly

proportional η increases), this is still a terrible efficiency

for a system that is meant to operate for as long as

possible on a set of batteries.

9.1.2.3.3 Switching regulators

The other type of voltage regulator is a switching

regulator. These have a high constant efficiency – it

doesn’t change based on the difference between the

input and output voltages like a linear regulator does.

This regulator type also draws an extra, constant

amount of current. I am down-regulating voltage – the

output is lower than the input. This means I need a

‘buck’ switching regulator, or buck converter.

9.1.2.3.4 Choosing a regulator

All the components in the design are intended to use a

very small amount of power. Once I have a final bill of

materials I will calculate the expected battery life,

however I estimate it will be over 1 year.

I chose to use a small switching (buck) regulator

purchased on AliExpress. This has a claimed efficiency

of 97.5%, and a static current of 0.85 mA. Using these

parameters, Figure 11 shows power loss by power draw,

for each type of regulator.

Figure 11. Power loss (mW) by power draw (mW) for
switching (red) and linear (blue) regulators, across voltage
range 4-6v.

It is worth considering that AliExpress claimed

characteristics are notoriously unreliable – real-world

data is required if we are to be certain. For my initial

prototypes, I will use a switching regulator as these tend

to be more efficient over a larger range. However, it may

be that a linear regulator is more efficient in the long

run. This can only be determined by experimentation

with a working system.

Figure 12. Chosen switching regulator.

9.1.3 GPS

To locate the trap, which may move by natural or

anthropogenic means (i.e., stealing, vandalism), a GPS

unit will be used. There is not much variety in the GPS

module market at this price range, so I will be using the

ubiquitous GY-NEO6MV2 (or similar equivalent)

module, with a NEO-6M GPS chip. This communicates

with the microcontroller via UART. It requires a voltage

between 3.3V and 5V. This is easily provided by the

power system discussed in Power (9.1.2 above).

 TrapApp: Research and Design, Pre-Concept Stage

13

Figure 13. Chosen GPS module.

9.1.4 Microcontroller

9.1.4.1 What’s a microcontroller?

A microcontroller is a small, low-power computer. This

is the component that reads the state of the detector

switch, checks the GPS, and sends the message over

radio. It is therefore a very important component, and

must be carefully matched with all other components in

order to work well.

9.1.4.2 Microcontroller options

Low power consumption. The microcontroller must

be able to enter a low-power ‘sleep’ mode. It should be

able to exit when the detector switch is triggered (via an

interrupt, see 9.4.3 Interrupts below), and periodically.

Supply voltage: The microcontroller should run on

3.3v so the same regulator as the radio can be used.

UART ports: Has at least 2 UART ports: one for the

GPS, and one to connect to a configuring external device

(e.g., laptop). If this isn’t possible, it must be able to

multiplex between them, which would require extra

hardware.

Size: The microcontroller and development board must

be small enough to fit inside the housing.

Low cost, high availability: The microcontroller

must be cheap enough to fit within the price range.

9.1.4.3 Microcontroller options

Following is a list of potentially relevant microcontrollers accessible to me:

Name of
dev-board

Actual
microcontroller
chip

Voltage Flash,
RAM

Sleeping
current
draw

UART ports Required UART
arrangement

Notes

Arduino
Nano

ATMEGA328p 3.3V if
oscillator
<12MHz

32Kb,
2Kb

~10 µA 1 hardware
+ 2
software
(emulated)

Debug/setup on
hardware, GPS
software emulated.

Oscillator <=12MHz is
difficult to find. Has UART--
>USB for debugging already
onboard. Not really
necessary but nice to have.

Arduino
Pro Mini

ATMEGA328p 3.3V on
8MHz
version

32Kb,
2Kb

~10 µA 1 hardware
+ 2
software
(emulated)

Debug/setup on
hardware, GPS
software emulated.

Easy to find 8MHz versions.
Doesn't have UART->USB so
less power consumption
but slightly less convenient.

NodeMCU,
Wemos D1
mini

Esp8266 3.3V 4Mb,
45Kb

400 µA
in light
sleep,
20 µA in
deep
sleep

2 hardware
+ 1
software

Debug/setup and
GPS on hardware.

The microcontroller cannot
wake from deep sleep by a
normal interrupt from the
detector switch. External
circuitry could be used to
reset the microcontroller,
but this would add extra
complexity. ESP8266 has
WiFi which I would not use,
hence is quite power-
hungry.

MSP430
Launchpad

MSP430G2XXX 3.3V 32Kb,
512B

< 10 µA 1 Hardware
+ 1
Software +
1 USB

GPS on hardware,
debug/config on
USB.

Much less software support
than Arduino. I have no
experience with this
platform.

STM32
Bluepill

STM32F103C8T6
(ARM Cortex
M3)

3.3V 64Kb,
20Kb

< 10 µA 3 Hardware Both on hardware
(ideal).

Should have similar
software support to
Arduino, uses Arduino
framework.

TrapApp: Research and Design, Pre-Concept Stage

14

9.1.4.4 Choosing a microcontroller

There are two promising options: the Arduino Pro Mini,

and the STM32 bluepill. The STM32 bluepill is better as

it has 3 hardware UARTs, uses slightly less power, and

has much more RAM and flash memory. Therefore, I

will use the STM32 unless I run into issues with

software support (e.g., a library for the radio). In that

case, I would switch to the Arduino Pro Mini.

9.1.5 Connectors

This hardware system consists of multiple

interconnecting parts - the node, the detector switch,

and the battery pack. There must also be a way to

connect a laptop or mobile device to the unit to

configure and debug it. All of these connections require

robust, easy-to-use and, in the case of the external ones,

waterproof connectors. One commonly available

connector is the SP13, an IP68-rated waterproof 13mm

plug. This is easy to mount in a face, so would be ideal

for the detector switch and configuration port which

need to be mounted externally. The male side

(connected to the switch and configuration laptop) is

quite long, which is not ideal for the battery which must

be mounted inside the unit, as it will take up too much

space. This plug does not need to be waterproof as it is

protected by the outside casing, so a much smaller DC

barrel jack can be used.

Figure 14. SP13 plug/socket diagram.

Figure 15. SP13, male and female ends connected.

Figure 16. DC barrel jack plug (male).

Figure 17. DC barrel jack socket (female).

9.1.6 Housing

The sensitive electronic components must be housed in

a protective box. The specifics of this will be discussed

in 11 Concepts below, though there are a few factors to

consider.

9.1.6.1 Material

The housing must be made of some material. This must

be durable and weatherproof. There are two primary

options for this: sheet steel, and plastic.

9.1.6.1.1 Sheet steel

Pros

• Durable.

• Low cost of entry – sheet metal tools are

relatively cheap.

• Low cost of material.

Cons

• Heavy.

• Can rust if not galvanised or painted correctly.

• Scaling up production can be expensive or time-

consuming.

• Blocks radio signals, meaning antennae must

be mounted on the outside.

9.1.6.1.2 Plastic

Pros

• Light.

• Very easy to produce at scale, after high barriers

to entry are overcome.

 TrapApp: Research and Design, Pre-Concept Stage

15

• 3D printers make rapid prototyping easy. This

can also be used for manufacturing, though

may be slower.

Cons

• Significantly weaker than sheet steel.

• Very high cost to entry for injection moulding

equipment.

• Material used in 3D printing is relatively

expensive, so should be avoided in strength-

critical applications which tend to use more

material.

One key requirement of the node is durability. For this

reason, I will construct the housing out of folded and

welded sheet steel. The two antennae will be mounted

outside of this main housing, to prevent their signals

from being blocked by the metal.

It may be possible to design a plastic housing in a way

that is sufficiently strong. This, however, would require

testing of many different thicknesses, densities, and

shapes of housing. I do not have the time for this, so

would rather over-engineer the housing with metal.

9.1.6.2 Waterproofing

The housing must be resistant to moisture ingress, even

in relatively heavy showers. If moisture does enter the

node, electrical components may be damaged or

destroyed, and metal parts will corrode.

Several techniques exist for reversibly sealing two

surfaces.

9.1.6.2.1 O-Ring

An O-ring is required to seal the system against the

elements. This will be installed in a small channel

around the antenna tower, underneath the steel lid. An

O-ring is a small rubber ring which, when pressed on by

two objects, prevents water (or other fluids) from

flowing between them.

O-rings can be made of many different plastics and

rubbers. I only need simple water resistance (not heat

or chemical proof), so I will pick the cheapest type.

O-ring dimensions are usually specified by outer

diameter (OD) and cross-sectional diameter (CSD), so

the formula for inner diameter (ID) is:

𝐼𝐷 = 𝑂𝐷 − 2 × 𝐶𝑆𝐷

Figure 18. An O-ring of relatively small diameter.

9.1.6.2.2 Silicone sealant O-rings

Silicone sealant is commonly used in bathrooms,

kitchens, and around windows, to keep moisture out.

However, it can also be used to create a custom O-ring-

like seal.

In a real production run, these would likely be replaced

with proper rubber seals. However, they are a useful

prototyping tool.

9.1.6.2.3 Glands

Glands are intended for providing a watertight entrance

for cables into a box.

Figure 19. A cable gland

These work by compressing a rubber ring (similar to an

O-ring) onto the cable by tightening the cap nut (see

Figure 20 below).

Figure 20. Exploded view of a cable gland.

9.1.7 Detector switch

The detector switch is a component external to the node,

which is connected via a waterproof connector.

It must close a circuit when the trap is triggered, and

hold it open when the trap is set.

There are a couple of options for this.

9.1.7.1 Microswitch

As the name suggests, these are small (‘micro’)

mechanical switches.

Figure 21. A ubiquitous microswitch, with steel lever arm.

 TrapApp: Research and Design, Pre-Concept Stage

16

The switch could be mounted in such a way that the

lever arm is depressed when the trap is set, and released

when the trap is triggered.

This would require a mounting bracket, which screws

into a specific location in the trap tunnel or trapping

mechanism. A moderate degree of accuracy is required

for the arm to be pressed properly.

9.1.7.2 Reed switch

A reed switch is a mechanical switch activated by a

magnet.

Figure 22. A small reed switch.

As before, a bracket would secure the switch to the trap

mechanism or tunnel. A magnet would be mounted on

a moving part of the trap, which would activate the

switch when the trap is ready, but not when triggered –

or vice versa.

Mounting a magnet on a moving part of the trap is no

mean feat. These moving parts are subject to extreme

forces in order to kill the pest animal, which may cause

the magnet to fall off. Further, securing magnets onto

metal parts usually requires accurate drilling into metal.

This is not achievable in the field, where many nodes

will be fitted – traps cannot all be brought back into a

workshop.

This leaves microswitches as the only feasible option.

The chosen microswitch must be waterproof, as it is

outside of the node’s main housing. The “T85” IP67-

rated model is cheap and readily available online.

Figure 23. The chosen IP67 (i.e., waterproof) T85
microswitch.

9.2 SOME REFERENCE PHOTOS (MOOD BOARD)

Figure 28. Celium node

Figure 25. (above) Victor rat trap and
tunnel.

Figure 24. (above) Econode attached to
Victor rat trap.

Figure 27. (above) Diagram of a
DOC200

Figure 26. The ubiquitous DOC200 rat and
stoat trap.

 TrapApp: Research and Design, Pre-Concept Stage

17

9.3 NODE FULL BILL OF MATERIALS (BOM)
Part Purpose / subsystem Quantity

per node

Unit price

(exc

shipping)

Price per

node

MOQ

price

Minimum

Order

Quantity

Supplier

RFM95w 915MHz Radio to communicate 1 $5.58 $5.58 $5.58 1 CN888 Store via

AliExpress

Module Mini 360

DC Buck Converter

Voltage regulator (buck

converter)

2 $0.45 $0.90 $2.25 5 FDKJGECF via

AliExpress

GY-NEO6MV2 GPS

module

GPS module to

determine node

location

1 $3.46 $3.46 $3.46 1 Wanzai store via

AliExpress

 STM32F103C8T6

"bluepill"

Microcontroller - brains

of the operation

1 $2.83 $2.83 $2.83 1 FDKJGECF via

AliExpress

SP13 2 pin plug Connect detector switch

to node

1 $3.00 $3.00 $3.00 1 ZHTCRJ via

AliExpress

SP13 4 pin plug Connect config device to

node. Unconnected in

normal operation

1 $3.14 $3.14 $3.14 1 ZHTCRJ via

AliExpress

DC Barrel

jack/socket

Connect battery to

microcontroller

1 $0.26 $0.26 $1.31 5 Locheuk

Connector Store

via AliExpress

SMA edge antenna

plug

Connect antenna to

RFM95w breakout

1 $0.26 $0.26 $2.61 10 GuoQi

Pneumatic store

via AliExpress

O-ring 50x47x1.5 Seal the system against

water

1 $0.33 $0.33 $3.33 10 U Officer Store

via AliExpress

Cable Gland Seal the antenna against

water

1 $0.54 $0.54 $5.44 10 Dashen Electric

Store via

AliExpress

915MHz antenna Allow the radio to

transmit signals

1 $3.17 $3.17 $6.34 2 Cerxus Store via

AliExpress

Waterproof

microswitch

Detects when the trap

has been triggered

1 $2.91 $2.91 $2.91 1 Daier Store via

AliExpress

Total electronics cost per node $26.39

This BOM shows the cost per node of all selected electronic components so far. Most of these components are

“development boards”. In a final production design, discrete components would be used on a highly sophisticated

custom PCB, which would cost significantly less.

 TrapApp: Research and Design, Pre-Concept Stage

18

9.4 SOFTWARE: NODE FIRMWARE
As discussed in the brief, it is critical that the node

consumes as little power as possible. This will allow the

node to be maintenance-free for as long as possible.

Therefore, the microcontroller in the node must operate

in a low-power sleep mode for the vast majority of its

life.

The node must be able to be accurately located, so

includes a GPS. This is especially important for public

traps, which may move slightly and must be easily

located by people unfamiliar with the environment.

Receiving GPS signals takes a fair amount of power, so

the GPS module should be switched off unless it is being

used.

LoRaWAN transmissions and GPS receives should be

kept to an absolute minimum, because this consumes a

large amount of power.

9.4.1 The Arduino framework

Different microcontrollers typically have different ways

of interacting with their hardware.

This behaviour is not because of the inherent

differences in the microcontroller: it is because they are

usually programmed in different frameworks.

As the name suggests, a framework is a common

‘dialect’ for interfacing with the microcontroller’s

hardware.

For example, in the STM32Cube framework, which is

the ‘suggested’ framework for use with the STM32, the

code to turn an LED on is as follows:

HAL_GPIO_WritePin(GPIO_Port, Pin, state);

In the Arduino framework, which initially ran on

Arduino hardware but now runs on a huge range of

microcontrollers (including the STM32):

digitalWrite(LED_PIN, STATE);

The key point here is not that the Arduino framework is

simpler (which it is), but that the one framework allows

for the programming of hundreds of types of

microcontrollers in the same way. On the other hand,

the STM32Cube framework only works on STM32

devices.

This means that I can use code written for Arduino

hardware on the STM32. This is incredibly powerful,

because there is an enormous catalogue of software

‘libraries’ available in the Arduino framework to serve

various purposes - for example, handling the difficult

parts of LoRaWAN, GPS, etc.

I am quite familiar with the Arduino framework. It uses

the C/C++ programming languages, which I am also

familiar with. Therefore, I will use the Arduino

framework.

I will write this code in the PlatformIO Integrated

Development Environment. This allows developers to

easily build projects across a myriad of boards and

frameworks. If I end up needing to switch to Arduino,

PlatformIO will automate the few tasks which I would

have to do to migrate my code. It also provides a high-

quality debugging tool, which should make

development easier.

9.4.2 Arduino framework control flow

In the Arduino framework, there are two key functions

(blocks of code): setup, and loop.

When the microcontroller is initially powered on, the

setup function runs once. This is used to initialise the

microcontroller – for example, the code might set up

various inputs and outputs.

Following this, the loop function runs repeatedly until

the device is turned off. This loop contains the bulk of

the software's functionality.

Figure 29. Program execution flow in the Arduino
framework.

9.4.3 Interrupts

We need a way for the code to know when the detector

switch has been triggered.

One option would be to check the state of the switch

every time the loop function runs. This method is called

polling. However, when the microcontroller sleeps, this

function stops running until the end of the sleep period.

This period may last hours or even days, to maximise

power savings. This means that a catch may be detected

and acted upon far too late.

Instead, the microcontroller can be commanded to

immediately stop what it is doing (and wake up from

sleep) when the state of the switch changes and do a

short task. It then returns to where it was in the main

program. This is called an interrupt, since the program

execution is being interrupted.

Figure 30. Execution flow of an interrupt.

 TrapApp: Research and Design, Pre-Concept Stage

19

9.4.4 LoRaWAN flow

LoRaWAN is quite a complex protocol. I will describe

what needs to happen from the trap’s end.

1. The node must first ‘join’ the LoRaWAN

network via the over-the-air-authentication

method (OTAA). It transmits a join-request,

sending several parameters describing it,

including the DevEUI, AppEUI, and AppKey.

2. The gateway receives these, and, if the node is

supposed to be a member of its network, it

transmits back a join-accept message.

3. The node stores all parameters derived from the

joining process. These are used for transmitting

‘normal’ data uplink messages.

4. The node can now transmit data uplink

messages using the information determined

earlier.

This is summarised in Figure 31 below.

Figure 31. The 'flow' of LoRaWAN packets between the node
(End-device) and gateway (LoRa Network).

9.4.5 State machines

Simple embedded devices such as this often use a

concept called a ‘state machine’ to formalise their

behaviour. In a state machine model, the device will

always be in one of several states. Each state has a clear

set of tasks that occur in the state, and defined ways of

entering and exiting the state.

For example, a state would exist for joining the network

as described above. Another state would describe

sleeping.

9.4.6 Required states

A full list of states follows:

9.4.6.1 Joining

Connect to the LoRaWAN network, much like you might

connect a cell phone to a WiFi network.

9.4.6.2 Preparing a packet

The device collects the information needed to be sent to

the base station (e.g., trap state, GPS location, battery

voltage), and builds this into the completed 'packet' to

be sent.

9.4.6.3 Sending the packet

The device sends the packet to the base station. It may

also be able to wait for an acknowledgement to ensure

that the transmission was successful.

9.4.6.4 Sleeping

The device sleeps, saving power.

9.4.6.5 Verify Trap State Change

In an ideal world, accurate information would be read

by the node. However, the real world contains electrical

interference, switch bounce, and numerous other

factors which may lead to an inaccurate reading or false

alarm. To mitigate this, after the trap is first detected to

have changed, the node waits a couple of seconds, and

reads the trap state again. If the two readings match,

then we can be sure the trap state has actually changed.

9.4.6.6 Periodic Wakeup Check

The device periodically wakes up from sleep, even if the

trap state hasn’t changed. When this happens, we need

to determine whether it is time to send a periodic

“phone home” packet, or just go back to sleep. If the

time since the last packet is high, or the battery voltage

is low, a packet should be sent. Otherwise, the node can

return to sleep.

9.4.7 State machine flowchart

 Figure 32. The node firmware's internal state machine.

 TrapApp: Research and Design, Pre-Concept Stage

20

9.5 SOFTWARE: APP
I anticipate this aspect of the project to be the most

challenging, as I have very limited experience with app

development.

In my brief, I establish the need for the app to run on

several different operating systems – primarily Android

and IOS, though some large-scale trapping operations

may use Windows, Mac, or Linux computers.

One way to achieve this would be to write a separate

version of the app for each platform, using its native

development tools. This is how large-scale developers of

apps, such as Facebook, work. However, this is not

practical for me as I do not have time to write many

different versions of my code.

Instead, I will use an app development framework that

allows code to be written once and compiled to many

different platforms. Several of these exist, including

Flutter (by Google), Appcelerator Titanium, and React

Native (Facebook).

All of these options compile to roughly the same targets,

though Flutter is the only one to target Linux.

Embedded Linux devices could conceivably be used in a

large-scale trap management operation, so it is worth

having the functionality. Flutter also has an excellent

library of pre-written software libraries. Therefore, I

will use Flutter for my app development needs.

Traps should be listed on a map, with icons clickable for

more information.

Another tab should display the user’s profile. This will

mostly be used for the public gamified component, so

users can view, friend, and interact with each other.

Gamification is defined as the " the use of game design

elements in non-game contexts " (Deterding, Dixon,

Khaled, & Nacke, 2011), which exploits "people's natural

desires for socializing, learning, mastery, competition,

achievement, status, self-expression, altruism, or

closure" (Lieberoth, 2014).

Gamification is widely applied. Successful examples

include Pokemon Go and iNaturalist, both apps that

require users to move to a real-world location and

complete a task. Uniquely, iNaturalist uses this

workforce for the documentation of plant species – this

is genuine work that experts get paid to do, much like

trap resetting.

Gamification draws off people's natural sense of

competition. Users can gain points for each trap they

reset. If a trap is unpopular, it will be worth more points

– this is supply and demand in action. A user score,

similar to Snapchat's snap score, will be assigned to

each user and will be visible to their friends. This score

will be a combination of the points derived from

resetting each trap, plus extra points from weekly

'streaks', and other factors.

For the public component, users need a way of telling

the system that they have reset the trap. A QR code or

barcode attached to the trap could be scanned, sending

a ‘secret number’ to the backend. This could be

correlated with the node’s own reporting of when it has

been reset, and the user’s GPS location.

9.6 SOFTWARE: SERVER
The backend server is essential for storing the state of

traps, and allows the app the work.

Care must be taken to develop the server in a robust and

extendable manner - many hundreds or thousands of

traps and users may access it, whereas there will only

ever be one trap interacting with the trap firmware, and

one user interacting with their copy of the app.

9.6.1 Libraries

The most efficient way to build software in the 21st

century is to stand upon the shoulders of giants - using

free, open-source software libraries and frameworks.

Each library is built to serve a particular purpose. For

example, Sequelize is a library which serves as adapter

between a MySQL database and the rest of the

application. This hugely simplifies the job of interacting

with the database, like every library simplifies the job it

is designed for. Libraries are developed and maintained

by teams of volunteers, and are thus thoroughly checked

for bugs and sloppy code. This results in a huge

collection of free, high-quality software, allowing me to

focus on what makes my system unique, rather than re-

inventing the wheel.

In the node firmware I am using the Arduino

framework, as my ‘lowest level’. The analogue of this in

the server is Node.js. This is an open-source JavaScript

server framework. This essentially serves as the

programming language and framework from which

everything else is built.

I will be using the following software frameworks and

libraries:

NodeJS Base language runtime
Express Web server library for NodeJS
MySQL SQL database allowing for quick

storage and retrieval of data
Sequelize An ORM (object relational mapping)

which makes interacting with the
database easy

JWT Helps with authenticating users
BCrypt Hashing library allowing secure

storage of user passwords in the
database

ValidatorJS Ensures data entered is valid

9.6.2 About APIs

An API (application programming interface) is a

structured way for two different pieces of software to

communicate with each other. I will be using an API for

the communication between the app and server. An API

does not display text or images to a user - it simply

mediates the flow of data.

I need a way of managing different groups of traps

differently. Some traps are public, whereas others

 TrapApp: Stakeholders

21

belong to different private owners. Therefore, I will

introduce the notion of a group. A trap belongs to one

or more groups. Users are members of one or more

group(s). Public traps are all put in the “Public Traps”

group, which every user is automatically a member of.

9.6.3 “Groups” concept

Some groups are private and require invitations from

group owners/moderators. Members of a group can see

the traps belonging to that group.

9.6.4 Structuring the application

Modern web applications can be very complicated. This

necessitates a strict project structure to organise all

code, lest 'spaghetti code' be generated. The server can

be split into several different modules:

• Router: the router receives the query from the

app, and decides what piece of code needs to

handle it, based on the URL.

• Controllers: A controller handles a related

chunk of the program’s functionality. For

example, the authentication controller handles

logins, registrations, password resets, etc.

• Model: A model describes a table in the

database, which represents some object.

Models don’t describe specific instances of

these objects – they are a description of them in

general. For example, the user model contains

fields email, password, username, signup date,

etc.

Figure 33. A description of what code subsystems handle a
request.

9.6.5 Hashing passwords

Passwords are an everyday part of the internet.

However, their storage requirements are unique. They

must not be stored in a database in ‘plaintext’ form, in

case the database is hacked. Instead, a one-way

transformation is applied to them. This is called hashing

them. When a user wants to log in, their password input

is hashed and compared to the saved hash. If they

match, the password is correct.

9.6.6 Persistent authentication

It would be very inconvenient for a user to have to log in

every time they wanted to switch pages on a website. For

this reason, the login process must give the user some

unique secret ‘token’ which they can provide with all

subsequent requests. When the server receives the

token, it knows that the user is correctly logged in, and

who the user is. This is the purpose of the JWT library –

a token is sent to the user, which is securely encrypted,

yet contains information about their username,

permissions level, etc. The user sends this back

whenever they want to make a request.

10 STAKEHOLDERS

At this point, it was time to contact a stakeholder for

feedback on my chosen direction, advice on how to

make the system fit into its environment, and some

traps to design my detector switches around.

I decided that Predator Free 2050 (PF2050) would be a

good place to start. They are the Crown-owned

charitable company established to oversee our predator

free 2050 goal. They provide funding for predator

elimination projects, as well as science and technology.

They have an annual “Products to Projects” funding

system, where projects like mine can apply for grants to

make a complete product. Of course, mine is nowhere

near the level required. However, it’s not impossible

that I could enter it next year.

Since PF2050 has experience dealing with designers

like me, I decided to contact them. I asked for:

1. Advice on how to make the system fit for the

environment it will be deployed in, and more

information about how existing sensors are

used. Ideally, I’d have a contact who I would

work with throughout the year as I create my

product.

2. One or more traps to design around. I can make

these myself, if need be, but ‘real’ ones I can

have or borrow would be better.

I received a reply from , the Research

and Development Project Support Manager at PF2050.

She suggested I contact Simon Croft of Celium, one of

the competing trap monitoring systems I discussed in 8

Analysis of Existing Devices above. She also said she

would look into getting me some traps to design around.

I emailed and unfortunately received no

reply – this may be because he doesn’t want to share his

trade secrets, which is fair enough.

A few days later, I received another email from

confirming that PF2050 would be willing to buy me a

couple of traps. We settled on a Victor Professional +

tunnel, and a DOC200. These were mailed to my school.

11 CONCEPTS

11.1 TRAP CONCEPT 1

 TrapApp: Concepts

22

Figure 34. Concept 1 drawings.

This concept consists of a rectangular box made of

folded and welded sheet steel. The GPS antenna is

mounted in a 3D printed plastic 'dome' to ensure the

signal is not blocked by the steel. The LoRaWAN

antenna may be vulnerable to damage.

Pros

• Easy to mount.

• Fairly simple construction.

• Strong waterproofing.

Cons

• LoRaWAN antenna may be vulnerable.

• GPS dome is a bit complex and may cause

waterproofing issues.

• Battery cannot be replaced without unscrewing

unit from trap, as it is accessed from the

bottom.

11.2 TRAP CONCEPT 2

Figure 35. Concept 2 drawings.

Pros

• Both antennae are protected from knocks and

are weatherproof.

• Simple base construction.

• Easy to mount on trap.

Cons

• Lid is complex and may cause

waterproofing problems.

• Lid is fragile plastic which somewhat

defeats the point of making the rest of the

body out of sheet steel.

 TrapApp: Concepts

23

11.3 DETECTOR SWITCH: VICTOR

RAT TRAP

Figure 36. Victor detector switch concept.

Pros

• Simple design and construction.

• Easy to attach to trap.

Cons

• Requires a waterproof switch.

• Cables leaving switch may be fragile.

11.4 DETECTOR SWITCH: DOC200

MICROSWITCH DESIGN

Pros

• Microswitches are simple, cheap, and
reliable, as per 9.1.7 Detector switch above.

• Doesn't require any attachments to the kill
bar, which would likely fall off from the

force.
Cons

• Requires accurate calibration relative to

the position of the kill bar. The calibration

would likely vary by individual trap as it

depends on the position of the trap relative

to the box. Shims could be used.

11.5 DETECTOR SWITCH: DOC200,

REED SWITCH DESIGN

Pros

• Reed switches are cheap and reliable.

• Doesn't require physical contact between

magnet (on kill bar) and switch, so less

accurate calibration required.
Cons

• There is no good way to attach the magnet
to the kill bar without drilling holes in

metal, which is not feasible in the field. The

kill bar experiences enormous force which

would destroy the magnet or knock it off.

As per 9.1.7 Detector switch above, I will use the

microswitch design for this detector switch.

 TrapApp: Development Drawings

24

11.6 SYSTEM ARCHITECTURE CONCEPT

Figure 37. The proposed system in its entirety.

12 DEVELOPMENT DRAWINGS

Initially, Trap concept 2 appeared to be the most promising to build upon, as it had much simpler sheet metal

components – Trap concept 1 requires a watertight seal between plastic and metal components for the GPS antenna

tower. However, after starting to make a full design based on Concept 2, I realised that due to antenna polarisation, the

LoRa antenna must be mounted vertically, or else major signal loss will occur. This concept is touched on in 9.1.1.9

Antenna above. In Concept 2, the antenna is mounted horizontally under the plastic shield which would not work with

a vertically-polarised gateway. I also was growing to dislike the use of a plastic lid, since this largely defeated the point

of having a steel body. It also complicated waterproofing. Therefore, I produced development drawings based on

Concept 1.

Figure 40. Exploded view, showing the battery
pack being removed.

Figure 39. The node being
disassembled. The steel lid is fixed to
the plastic internal caddy.

Figure 38. The assembled node.

 TrapApp: Development Drawings

25

 TrapApp: Modelling and Development

26

13 MODELLING AND

DEVELOPMENT

13.1 CARDBOARD MODELLING
To understand the true scale of my design, I created a

cardboard model of the node housing. The antenna

cylinder was not created as it is hard to make a cylinder

out of cardboard and was not necessary for determining

the relative scale of the system.

Figure 42. Cardboard model

Figure 43. Cardboard model relative to a trap.

13.2 CADDY

13.2.1 About 3D printing

The next stage was to create a functional model of a

node out of the real materials, starting with the internal

caddy. The caddy is made out of plastic, so it will be 3D

printed.

In production, plastic parts are usually made by

injection moulding: a steel mould is made, and molten

plastic is injected into the mould. When the plastic

cools, the mould is split, and the part removed. The

process repeats. This has a very high cost of entry –

making moulds and buying an injection moulding setup

is not cheap. As an alternative, for prototyping, 3D

printing is widely used. This takes a relatively long time

to create each part, and each part is more expensive

than if it was injection moulded – though obviously

cheaper than making a new mould for every change.

I will be using the fused deposition modelling (FDM) 3D

printing technique, in which a moving nozzle deposits

molten plastic, which cools down into a solid object.

This is because it is easier, cheaper, and less toxic than

the alternatives.

FDM 3D printers can create objects out of several types

of plastics. The most common of these is PLA (polylactic

acid) derived from plant materials. This means it is

relatively biologically safe and friendly to the

environment. Another popular plastic is ABS

(Acrylonitrile butadiene styrene). This is a mixture of

several hydrocarbon-derived chemicals which form into

a hard plastic, which is marginally stronger and more

heat-resistant than PLA.

My product is to be deployed outdoors. Therefore, it

could conceivably break, leaving broken pieces of

plastic. To reduce the environmental impact if this

happens, I will use PLA, as this is a non-toxic plastic and

is somewhat biodegradable. It also produces less toxic

fumes in the printing process and is generally easier to

work with.

3D printers are not good at printing overhangs. This is

because they print layer-by-layer, with each layer

supported by the one below it. The largest overhang

angle possible is usually around 55 degrees. To allow for

overhangs steeper than this, removable supports can be

printed along with the main model. This support

material is usually disposed of after being removed, so

it is a good idea to minimise the amount used.

When operating the 3D printer, I will wear gloves and

safety glasses to mitigate the risk of burns. I will use PLA

filament where possible, which does not produce toxic

fumes. I will not put my hands inside the machine while

it is switched on to avoid jammed or burned fingers.

13.2.2 Slicing

Because the part is largely hollow, support material is

almost certainly required. It is important that support

material is not placed in difficult-to-reach places, where

it may not be easily possible to remove it without

breaking the part. Two orientations of the part were

tested in the printer's software, which reports the

amount of filament necessary. Choosing the lowest

mass of plastic allows for the most efficient print.

Option A (159g):

Figure 41. Lid

 TrapApp: Modelling and Development

27

Option B (140g):

In option A, a large amount of support material is used

(yellow), especially in the battery compartment which is

entirely filled with support. In option B, support exists

all around the base (except for the antenna tower). This

would be easier to remove than in the battery

compartment. Supports also exist for the circuit board

standoffs.

Option B requires less mass of support, and it will be

easier to remove. Therefore, I will print in orientation B.

Because this is an early model, a high-strength and

high-quality print is not required: speed and material-

saving are more important. Therefore, the printer is set

to 'fast' speed, with a large layer height and low density.

13.2.3 Printing

This photo shows some of the support, prior to removal.

Removing the support material is a fairly messy process.

It is clear how much plastic is wasted by using supports,

and why minimising their use by changing orientation

is important for efficiency.

13.2.4 Evaluation of print

This print worked quite well. The support material was

easy to remove and came off cleanly. The plastic is

robust, and the walls are thick enough to withstand

damage.

One minor issue is the lines on the top face of the box. I

believe these are caused by a slight error I made while

rotating the part in the slicer software, where the box

was rotated one or two degrees from horizontal. This is

such a small change that is causes no problems to the

box's function, but it causes unsightly lines.

13.3 SHEET STEEL HOUSING
It was now time to make a model housing out of sheet

steel.

Three sheet steel pieces were to be cut, folded, and

welded, resulting in two parts: the main 'container', and

a lid.

The 3D model of the housing can be turned into a ‘flat

pattern’, showing the cuts and folds required.

 TrapApp: Modelling and Development

28

Figure 44. Flat pattern of housing.

Figure 45. Flat pattern of lid.

Blue engineer's dye is applied to sheet steel stock to

increase the contrast between scribed lines and metal

background. Lines are scraped into the stock according

to the drawing using a square, ruler, and scriber.

The steel is cut with a bench shear, which operates

similar to a paper guillotine. Gloves are worn to protect

against the metal's sharp edges.

The cut pieces are again applied with dye, and scribed

with lines for where they must be folded. The first piece

to do is the container wall, which require 3 bends to go

from the long piece in centre shot above to a closed

rectangle.

Three bends are made with a cornice brake, forming a

closed rectangle.

Of course, one of the corners is not connected. This

must be solved by welding the corner together in a

watertight fashion. A rectangular piece of wood (visible

above, inside the walls) is cut to brace the walls in the

required shape while welding.

 TrapApp: Modelling and Development

29

The housing base was made in similar fashion. It

requires some holes to be drilled in it for screws

mounting to a trap tunnel.

I must now weld the pieces together. Safety equipment

is essential when welding. Overalls and an apron are

worn to protect my clothing, and a welding helmet is

worn to protect my eyes from blinding UV light emitted

by the welding arc. Before welding, I need to determine

the welding settings matched to the material.

This piece of scrap metal was used to tune the settings,

so the welder penetrated the metal sufficiently to make

a good bond yet did not put holes in it.

The optimal settings found for this material are shown

above.

My photographer held the base and walls together, and

I tack welded them. Tack welds are temporary welds

that are meant to hold the work pieces together while

the main welds are done, eliminating the need for bulky

clamps.

Unfortunately, my strategy of having someone push the

parts together did not work very well – there was a large

gap between the pieces. I cut the tack welds and was

ready to try again.

This time, I clamped the work properly. This will

minimise the gap between the walls and base. As before,

I welded the parts together.

 TrapApp: Modelling and Development

30

This is not a good weld. I think there are two reasons –

I am attempting to weld galvanised (zinc-coated) steel,

but the zinc disrupts the welding arc. Also, I have very

little experience welding sheet steel. Next time, I will

strongly consider not using galvanised steel.

To remove the worst of the welds, leaving only the useful

parts, a Dremel and grinder are used. This does not fully

work inside the housing, but it is much better. In the

future, I should design or weld this in such a way that

doesn’t result in difficult-to-grind internal welds.

This slightly bulging weld prevents the caddy from

fitting. This is easily solvable by cutting some excess

plastic from the caddy.

Now that the base box is done, and the caddy fits, I must

make the lid. Metal is dyed, marked, and cut as before.

I then drill the holes – 4 small holes for the bolts that

hold it onto the caddy, and one large hole for the

antenna tower.

A hole-saw is used to cut the larger hole.

The antenna tower fits through the hole-sawed hole,

and the bolt holes line up.

 TrapApp: Modelling and Development

31

Slots are cut and the sides of the lid are folded down. I

initially planned to cut off the extra flaps of metal (like

in the top left corner), however I realised that these

could help provide more waterproofing and make for

easier welding, so I kept the other three. I will keep all 4

in the next version.

The finished folded lid. Because this is an early model

that isn’t intended to be waterproof and considering the

issues I faced with welding galvanised steel prior, I

chose to not weld the corner flaps in place for this

iteration.

To connect the lid and caddy, matching bolts and nuts

must be used. Nuts are pressed into special hexagonal

holes in the plastic caddy, while the bolt heads protrude

from the lid. My parts are designed for M4 bolts, though

this is likely overkill. M3 or even smaller would likely

work fine.

The nut pressed into hexagonal holes in the caddy.

The lid attached to the caddy.

The fully assembled model housing, on top of a trap.

The caddy/lid assembly separated from the base box.

 TrapApp: Modelling and Development

32

13.3.1 Evaluation of caddy

This first attempt to create a metal housing was largely

successful. I did, however, find a few things to change

before attempting to make the real thing.

Welding galvanised steel is difficult and a bad idea.

Welding necessitates grinding away the galvanisation in

many places anyway, leaving exposed metal which must

be painted. This defeats the point of using galvanised

steel. In the future, I will use normal non-galvanised

steel (which is far easier to weld) and paint it.

My tolerances as designed in CAD were a bit too tight.

The actual bend radius of the steel was much larger than

what I had designed for, and the gap between the lid's

lip and caddy walls was too small, making it tricky to get

the container's walls in this gap. Therefore, I will adjust

my sheet metal design settings and increase the

tolerances.

I will not cut off the lid corner's flaps. Instead, these will

be folded over and used to aid welding and

waterproofing.

The container walls will be welded before attaching

them to the container floor, so that the weld can be

ground on both the inside and outside.

The caddy will be reshaped to give some room for

slightly bulging internal weld beads.

13.4 ELECTRONICS

13.4.1 Circuit design

The individual subsystems and corresponding pieces of

hardware are discussed in 9.1 Node hardware above.

However, we must determine how they are connected

together. Different modules communicate over

different electrical and software protocols.

13.4.1.1 GPS

The GPS communicates using UART, the same as the

communication between the microcontroller and a

connected computer. Luckily, the STM32 has three

independent UART ports, allowing for both GPS and the

configuration interface to run simultaneously. UART

requires two data wires - transmit and receive, as well

as ground and power for the module. The transmit pin

of one module is connected to the receive pin of the

other, and vice versa. This allows for bidirectional

communication between two devices.

13.4.1.2 RFM95 radio

The RFM95 radio module communicates using the

Serial Peripheral Interface (SPI). This is a common data

communication protocol which can connect a single

'master' device to multiple 'slave' devices. The

microcontroller would be the master device, and the

RFM95 the slave. SPI requires three data wires that are

shared between all devices on the bus, plus one 'slave

select' wire per slave. For my one slave, three data wires

are used for SPI. The RFM95 also requires some

supplementary connections: reset (restarts or switches

off the radio), and DIO0/DIO2 (two pins which carry

supplementary information e.g., when the transmit is

finished). This is a total of 7 data wires, as well as power

and ground.

13.4.1.3 External connections

Connections must be made with the outside world, in

the form of the two SP13 plugs. One of these is for the

detector switch in the trap, and requires ground and one

signal wire. The connection to the configuration and

debugging computer (I refer to it as 'condeb') requires a

simple UART interface, which consists of two data

wires, as well as power and ground. This is 6 pins in

total. A socket will be placed on the main circuit board,

allowing the SP13 plugs (mounted on the housing) to be

removed or connected when necessary. A blank pin will

be used to ensure the plug is not inserted upside down,

meaning the connector will have 7 pins, only 6 of which

are connected to anything.

My circuit design follows.

 TrapApp: Modelling and Development

33

13.4.2 Printed Circuit Boards

13.4.2.1 What’s a PCB?

There are a number of ways to build a circuit. The most

basic is called freewiring - individual, flexible wires are

soldered between all connecting points in the circuit.

This takes excessive wire, space, time to solder, and is

very error-prone as all connections must be done

manually. It also introduces the risk of wires touching

each other and shorting out, damaging the circuit.

Freewiring is good for basic circuits, but quickly

becomes impractical for those as complex as mine.

Another way to prototype circuits is by using perfboard.

Perfboard is short for perforated circuit board, and is

essentially a blank PCB filled with a grid of standardly-

spaced copper-plated pads, to which components can be

soldered. This holds components in place like a proper

circuit board, however all connections must still be

made with individual free wires.

The most advanced way to prototype (and produce)

circuits is to make a custom printed circuit board.

Circuit boards of this type are essentially a flat piece of

fibreglass with very thin copper wires attached to the

top (and sometimes bottom, if a circuit is especially

complex). Proper circuit boards are covered with an

electrically insulating 'solder mask' to prevent shorts

and to improve the board's appearance. It is, however,

possible to produce custom circuit boards yourself.

There are several approaches to this, however all start

with the same material and have similar basic steps.

I need to make two PCBs: A ‘mainboard’ which will

house all my electronics, and the aforementioned

RFM95 breakout board, designed by attexx on Github.

13.4.2.2 How to make a PCB

First, copper-clad fibreglass board is purchased. This is

the 'blank canvas' of the circuit board world. It consists

of a fibreglass board coated on the top (and bottom if

double-sided) with a very thin layer of copper metal.

The side profile of this material (if double-sided) looks

something like this:

Single-sided copper-clad board looks like this:

Note the shiny copper side and brown fibreglass side.

To make a circuit board, copper must be removed

everywhere on this board except for where wires are

desired. This can be achieved many ways.

Both involve 'masking' the areas of copper that are to be

kept (with a chemical-resistance cover), then placing

the board in a chemical that removes (etches) the

exposed copper. After the unwanted copper is removed,

the mask can be washed off by a different chemical, such

as acetone.

Figure 46. The basic steps of PCB manufacture.

13.4.2.3 Toner transfer

One very popular way to produce circuit boards is to use

the toner transfer method.

The mask is printed, by a laser printer, onto glossy

paper, such as that out of a magazine. The mask is

temporarily attached, face down, onto the surface of the

copper (which has been pre-cleaned with acetone and

steel wool to remove the oxide coating). The paper is

then ironed, or otherwise pressed and heated. This, in

theory, transfers the toner onto the copper, acting as a

mask.

Pros

• Quick and simple, if settings are already known.

• Can be done with everyday tools and materials.

Cons

• Lack of repeatability - pressure must be very

even and in just the right amount. Incorrect

temperature will result in no transfer, or a

squashed, 'bleeding' transfer.

• Printer-dependence. Different printers and

toners work differently, and some work much

better than others.

• Difficulty to tune the settings. A lot of work has

to be invested into finding the correct

temperature, pressure, time, and other

parameters specific to my printer. I don’t even

know if my printer and toner is very good for

toner transfer in the first place.

As this was the simplest option, I had a tiny bit of

experience, and was doable with on-hand materials and

tools, I decided to try it, despite its shortcomings.

First, the circuit is exported from KiCAD (my PCB

design software) as an SVG image. Inkscape is used to

duplicate the image, so that multiple images can be

printed on a single page. It is printed using a standard

laser printer (not inkjet, as the properties of the toner

are essential). Glossy paper is used which prevents the

toner from firmly adhering to the page, allowing for a

better transfer onto the board.

 TrapApp: Modelling and Development

34

It is essential that the copper surface is clean for the

toner to properly transfer. Therefore, surfaces are

cleaned with steel wool followed by an acetone wipe.

This removes paint, oxides, oils, and miscellaneous

grime, leaving only metallic copper.

The next step is to attach the paper with the transfer to

the clean board, face down. The paper can then be

fastened with to the board with tape.

The paper must now be heated and compressed, which

should transfer the toner from paper to board. A large

amount of pressure must be applied very evenly, at a

specific temperature.

One popular way to achieve this is with a standard

clothes iron. A piece of A4 paper is folded and placed

between the iron and glossy paper for protection from

rips and to help distribute heat more evenly.

Once ironing is finished (about 5 minutes, though

determining the optimum time is very difficult), the

paper can be removed. This is made easier by running

the board under water, dissolving the paper, and cooling

the board.

I then placed the board into etching chemicals.

The toner transfer process proved a source of constant

trouble and lack of repeatability for me. One common

problem was tracks incompletely transferring, or

coming off the board during etching. Also note the

massive amounts of smudging occurring in the bottom-

area of the board, in the left-hand photo above. The best

transfer I achieved was the right-hand photo above. The

photo was taken mid-etch, observe the pink copper

metal with no oxide layer.

Also note the touch-up with a pen in the bottom left

corner of the photo. This is a fairly decent transfer,

though etching still did not go according to plan.

 TrapApp: Modelling and Development

35

The same (best) transfer post-etching, before washing:

This appears acceptable, though there is a fair amount

of bleeding in the top-right area. However, after

removing the mask, it is evident that the mask did not

effectively protect all the copper underneath.

The primary issue with this board is the uneven transfer

of toner (less in the bottom left corner of the board),

resulting in missing copper, leading to a useless board.

This is a symptom of the wider issue with toner transfer

– it is very difficult to get a repeatable result.

With much more time and effort, I believe I would be

able to create a fairly good board, and possibly make the

process reliable. Online research suggests that certain

brands of printer and toner are better or worse. I was

printing on my family's Brother printer, using an

aftermarket toner, which is considered to be a bad

combination by those in-the-know. It is possible that

using a different printer would solve some of my

problems.

However, a new method for applying a mask looked

more promising.

13.4.2.4 Laser cutter masking

The board is covered with a thin layer of spray paint,

which acts as a mask. The unwanted parts of the mask

are removed by a laser cutter, essentially burning the

paint off. The underlying copper is not affected, as it is

a metal which is far harder to burn through than paint.

This leaves the mask where it is wanted, and bare

copper everywhere else.

Figure 47. The process of laser-applying a mask. The masked
board can then be etched as before.

The goal of this laser cutting is to remove black paint off

the surface of a copper-clad fibreglass board without

damaging the copper, and without leaving any

significant paint behind.

There are three main parameters that determine how

the laser acts on the workpiece:

Laser power: This is a percentage scale from 0% to

100% power. A higher power will cut more and faster,

however may have a wider area of cutting which can be

problematic if very thin, accurate lines are required.

Speed: How fast the laser moves, in millimetres per

second. A slower laser will remain on a specific area of

material for longer, so will cut more. A faster laser will

simply brush over the material, so will make less of an

impact. A slower speed will also make the cut take

longer, which is best avoided.

Passes: How many times the laser is to go over the

same material. Essentially, adding extra passes makes

the same cut happen again on the same path and same

material. Adding more passes has a similar effect to

using a slower speed.

I want to minimise the time it takes for the mask to be

lasered, so I will set the power as high as possible, as this

has few consequences other than possibly a slightly less

accurate cut. If this becomes a problem, I will turn down

the power.

Pros

• Very repeatable. Unlike toner transfer, all steps

are machine-controlled, meaning that tuning

exactly the right temperature and pressure

(which don’t have to be manually applied) are

not problems.

• Less work. Once set up, the laser must just be

set up and told to go, unlike toner transfer,

where a piece of paper must be cut out, taped

down, and ironed, which may take several

attempts.

Cons

• It is very slow. The laser is not very powerful, so

the process of removing all the required

material can take a while, on the order of hours.

• It requires specialised equipment, namely a

laser cutter. This is not a problem for me as I am

at school, but it means I must finish my boards

before I leave or go on school holidays.

 TrapApp: Modelling and Development

36

As laser cutters can be dangerous, I will keep my fingers

clear of moving parts, keep the laser-proof lid closed

when possible, and ensure the fume extractor is active

when cutting.

The copper-clad blank is spraypainted black (the most

absorbent colour, which should help to absorb the most

heat energy from the laser for highest effect):

Like 3D printers, laser cutters require software running

on a computer to prepare instructions describing how

the machine must move. I used the software Lightburn,

which is designed for the Emblazer range of laser

cutters. I am using an Emblazer 2.

There are a large number of ways that movements can

be described to the laser cutter. The simplest is to simply

draw shapes inside Lightburn, such as circles,

rectangles, and lines. For my test piece, I make the laser

cutter draw some text.

Trial and error with the laser now begins. This takes a

few attempts but eventually I get some good settings.

Attempts with the test piece, which is reused from a

failed 'real' attempt. Note that in some places, the

fibreglass has been burned, meaning that the power is

far too high, or speed is too slow. The figure in the top

right is quite good, however there is still a thick black

coating.

I found that the aforementioned black paint residue

could be removed with a wet cloth, revealing copper.

The settings that worked were 5mm/s speed, 100%

power, 3 passes, air assist off.

I now move on to making a real board, and etching it.

While it would theoretically be possible to create a

circuit board by drawing shapes in Lightburn, it would

be inordinately tedious, time-consuming, and error-

prone. Instead, circuit boards are designed in

specialised design software then exported to Lightburn.

I use a free and open-source program called KiCAD to

design circuit boards, and export these as SVGs, a form

of infinitely-zoomable (without losing quality) image

known as vector graphics. These SVGs are exported as a

negative image, since the removal of paint translates

into the removal of copper, which is the opposite of what

may be considered 'normal' for KiCAD.

The following is the circuit board design for the RFM95

breakout board (9.1.1.8 Choosing a hardware module

above) in KiCAD. Note that this is a double-sided board,

 TrapApp: Modelling and Development

37

so the green and red images are to be etched into

opposite sides of the board. First, I will attempt to make

this one-sided as the back side is not really necessary.

The design exported from KiCAD, in SVG format:

The laser will cut (i.e., remove paint) on the black areas,

and leave the white alone.

The toolpath can now be generated in Lightburn. There

are two options for this: raster, and vector.

Raster is the simplest and most common way of laser-

cutting an image. The laser simply scans back and forth

horizontally along the image, changing the output

power as required. Since this is a black-and-white

image, the output power would oscillate between 100%

where black, and 0% where white. This is quite

inefficient, because a large portion of the image is white,

so the laser is only wasting time by being there.

Instead, the vector process can be used. This is where

the laser travels only along the path to be cut. This saves

a lot of time compared to raster. This also results in

smoother, less 'furry' lines which can result from

vibrations and variations in raster cutting.

To vector cut, Lightburn must 'trace' the image. This is

a process where it finds the edges, and determines what

must be filled (black).

The settings found previously were applied. The mode

‘offset fill’ is Lightburn’s name for a filled vector cut.

A preview of the path the laser will take is generated.
The estimated cutting time is about 40 minutes.

The PCB is prepared by cleaning and spraying it as

before. It is then loaded into the cutter, and cut.

I now drill holes where the pins will go. I decided to do

this before etching, as I was afraid the copper may

delaminate from the fibreglass if I attempt to do this

following etching.

Unfortunately, the chucks of most drills are too small

for the 1mm drill I used. Luckily, the school had a tiny

chuck for a Dremel, and a drill press type stand for it.

 TrapApp: Modelling and Development

38

Safety glasses were used while drilling. A heat gun was

used (set on very low heat) to blow dust away).

I now had to etch the board. There are numerous

etching chemicals. I chose to use Copper (II) Chloride. I

had used this previously, and still had some left over. It

was somewhat ‘worn out’ from previous etchings, so it

was regenerated with hydrogen peroxide. Gloves and

glasses were used when dealing with these chemicals.

Etching lasted around 1.5 hours until all the exposed

copper was gone.

This etched board looked quite good to me. I noted that

the tracks and pads were a bit thinner than expected.

I then washed the mask off with acetone, and began

soldering pins onto the board. After washing, it became

apparent that some of the tracks had worn away. I

attempted to fix these by soldering a wire on. However,

this wouldn’t work as the RFM95 module must sit where

the wire is.

There were a couple of other problems. First, solder was

reluctant to stick to the copper. This is unusual, and may

indicate that there is a remaining chemical coating on

the copper. This is possibly acetone, which tends to

leave a thin oily film. Cleaning again with isopropanol

didn't seem to make much of a difference, but perhaps I

simply wasn’t cleaning hard enough or with the right

solvent.

Second, there was a gap between the copper of the pad,

and the hole.

This is a problem because the flow of solder from the pin

to pad was interrupted, making soldering difficult and

joints very weak.

I can be sure that the copper was there before etching,

because the mask existed right up to the drilled hole.

This means that the etchant must have crept under the

paint, around the pre-drilled holes. This is also probably

the reason why the tracks are so thin – etchant has

moved under the paint in some areas, etching the

copper despite it still have paint on it. This is likely the

result of my excessive etching times. Guides on the

 TrapApp: Modelling and Development

39

internet tend to suggest 15-30 minutes, whereas mine

took more than an hour.

There are two ways this could be remedied. First, holes

should be drilled following etching. This will make it

harder for the etchant to get under the paint. Secondly,

etching time should be reduced if at all possible.

However, I need to etch until all the unmasked copper

is removed. I believe this etching is taking a long time

because there is still some paint residue on the board –

like what I wiped off, yet smaller.

While experimenting, I tried several different laser

power settings, to see if a different power would yield

less paint residue. To my surprise, 5% power made an

extremely sharp, clean cut through the paint, appearing

to leave almost no residue. I suspect the higher power

was causing the paint to form a different, stickier

polymer. The lower power causes some other chemical

or physical process to remove it without producing as

much of this other polymer.

I also decided to attempt to make a double-sided board.

The initial steps for this are the same as before. To

produce double-sided boards, I must drill the holes

prior to etching (despite deciding this is not ideal) in

order to line up the two faces.

I then laser-cut a cardboard jig which used sewing pins

to go through the holes in the board, precisely aligning

the backside of the board. The jig is shown in blue

below. The pins passed through two holes (one on each

opposite corner).

The board could then be aligned in the jig and lasered

(with 5% power, as discussed).

As you can see, much more fine detail is retained, and

the board appears quite shiny. The proof will be in how

well the etching goes.

This etching worked quite well: the traces have some

girth to them, though there is a bit of a gap between the

pin-holes and pad.

 TrapApp: Modelling and Development

40

This is, however, sufficient to make a proof of concept.

Components (the RFM95W, SMA antenna connector,

and pins) were soldered on:

13.4.3 Evaluation of PCB making

Creating circuit boards took far longer than I

anticipated. Each step in the process of making them is

relatively easy, however a successful board is contingent

on all the steps working well, meaning there are many

points for failure to occur requiring me to start over.

I now know the rough laser-cutter parameters required,

so making more PCBs will be much quicker. There are

still definitely things to improve – there is still a large

gap between pin-holes and pads, and etching takes

longer than it should. I will address these issues when

they start causing problems – for now, the method is

sufficient.

When my circuit board designs are perfected, I may

choose to have them professionally made by overseas

prototyping companies such as JLCPCB. This is not

practical for untested designs, since it costs money and

takes time (on the order of a few weeks) to have boards

made and delivered.

13.5 SERVER SOFTWARE
As discussed in 9.6 Software: server above, I will be using the NodeJS framework to create a web API. This API has a

number of routes, each corresponding to a different function within the API. For example, the /auth/login route allows

the user to submit a login request.

13.5.1 List of required routes

Name Function URL Request contents Response contents

Login Logs the user in /auth/login Username/email,
password

Authentication
token

Register Allows a new user to register
an account

/auth/register Personal details

Forgot
password

Allows a user to reset their
password if they forget it

/auth/forgotpwd Email

Get trap list Get a list of traps in the vicinity.
Depending on the user's 'level',
they may be able to see more
traps

/trap/traplist Auth token, current
location, filter
options

List of traps

Reset trap Allows a user to claim that they
have reset a trap

/trap/resetclaim Auth token, location,
trap information

Trap
information

Fetch detailed information
about a trap

/trap/trapdetails Auth token, trap id Trap information

Add new
trap

Add a new trap to the system

Get user
profile

Fetch somebody’s profile /social/profile Auth token,
username or user id

User profile, error
message

Set user
profile

Allows a user to update their
own profile

/social/profile Auth token, new user
profile

Upload
picture

Upload a picture, such as a post
or profile picture

/social/picture Auth token, image Error message,
image id

Get picture Access a picture uploaded by
someone by id

/social/picture Auth token, picture id Error message,
image

 TrapApp: Modelling and Development

41

Delete
picture

Allows a user to delete a
picture if they own it

/social/picture Auth token, picture id Error message

Make post Allows user to share a catch
with an image

/social/post Auth token, post Error message, post
id

Get post Gets a post by id /social/
post

Auth token, post id Error message, post

Delete post Deletes a post if the user owns
it

/social/post Auth token, post id Error message

Get feed Get a list of post ids made by
friends. Similar to instagram
feed

/social/feed Auth token, feed
page number?

Error message, list
of post ids

Trap
information

Load information from a trap
when it makes a LoRaWAN
broadcast

/trapb/update Trap information,
secret key

Error message

This is obviously a lot of work. However, the basic functionality can be written first, and the non-critical parts like social

media added later. I will start with authentication since this is required for all other features. I will then move on to trap

information and trap backend, groups, then social.

13.5.2 Models

As discussed in 9.6 Software: server above, models represent data stored in the database. Models are good on their own,

but are especially helpful when linked together. For example, there exists the User and Profile models. Every user has

exactly one profile. This allows us to easily link distinct pieces of data together. More complex model associations exist,

such as “many to many”. For example, a trap may belong to many groups. A group may have many traps. Therefore,

there exists a many-to-many relationships between groups and traps. The following diagram describes all relationships

using crows-foot notation.

Figure 48. All the models, their contents, and the connections between them.

I will implement my models in roughly this order, to flesh out the basic functionality then add fancy features:

1. User

2. Profile, partially (to figure out how basic one-to-one associations are implemented)

3. Group (an important junction node, and a slightly more advanced association to learn)

4. Trap

5. Catch (at this point, the system will be functional, albeit quite basic)

6. Image

7. Finish profile

8. Post

 TrapApp: Stakeholder Feedback, Round 1

42

14 STAKEHOLDER

FEEDBACK, ROUND 1

Now that I had a pretty good idea about the design of

my system, I showed my design to my stakeholders.

14.1 PREDATOR FREE 2050

()
I had already talked to in 10 Stakeholders above,

where she provided me with traps to design around. I

emailed her copies of my development drawings and a

render showing what the node would look like attached

to a trap.

 was quite positive about my design, though had

two main points about my design.

If the antennae are not removable, as I had until this

point intended, nodes would be extremely bulky (and

fragile) when in transport. This would seriously

encumber their deployment, as they would have to be

stacked to be transported, which would not be possible

if they had antennae permanently mounted. This

problem necessitates a slight design change.

Also, the weight of tools required for installation may

cause challenges, as many traps can only be accessed on

foot. I don't think this is really a problem, since

installation only needs to be carried out once, and

bringing tools to traps is still far more practical than

bringing all deployed traps to a workshop. Of course,

newly deployed traps can have nodes fitted in a

workshop prior to deployment. Plenty of trap

maintainers already carry electric drills to make

opening traps easier. The only tools required would be

screwdrivers, and maybe a drill.

I replied to her, discussing my proposed changes for the

first problem (15 Development Drawings, Stage 2

below), and explaining my understanding of the tool

situation. She confirmed that trap maintainers do often

carry drills. She also raised the point of the weight of the

nodes. This is valid, since they are partially made from

steel and contain relatively heavy batteries. However, I

don’t think the weight would be significant compared to

heavy wooden and steel traps.

14.2 PROF. RACHEL FEWSTER
Upon learning of my project, my calculus teacher

suggested that I meet with his former lecturer, Professor

 at the University of Auckland. She

coordinates the CatchIT project, one of the largest and

most comprehensive platforms for trap data entry,

storage, and analysis. mostly commented on the

software component, as this is her specialty. She

describes trap software platforms as either “inputs” or

“outputs”. Inputs take real-world trap data (either from

manual data entry or an automatic system) and put it in

a database. Outputs display and analyse this data.

 sees no problem with a variety of

inputs, as each may have its separate use, but identifies

a problem with fragmented outputs. This fragmentation

leads to several (potentially competing) groups trying to

collect data, and increases the onus on all input

developers to cater to many outputs.

She believes that the urban trapping is already fairly

well done. There is no shortage of volunteers to reset

and log urban traps because of the large population

nearby. Urban areas also make up a small proportion of

New Zealand's land area, and an even smaller

proportion of land area where wildlife is likely to reside.

Instead, she sees my project having a much more

significant effect in the back country. Despite their

flashy branding, existing systems like Econode and

Celium do not appear to be widely used, and do not

appear to be integrated with systems like CatchIT and

TrapNZ, resulting in even more fragmented outputs.

She agrees that this may be due to their price, an aspect

which I can conceivably improve upon.

The public-access aspect of my system could be much

more useful in the bush. Many traps can only be

accessed via a long bush walk, meaning that they are

checked and serviced infrequently. There is also

preliminary evidence that suggests certain traps 'run

hot' for a period of time after a catch. Unfortunately, if

they are not checked for several weeks after a catch, then

only the first visiting animal is caught. If, on the other

hand, passing recreational trampers are able to reset a

trap, it may be back in service in a matter of days.

Trapping groups usually do not want other people (the

public) resetting their traps because they lose the

valuable data, and these people may not be well-

informed on how to reset the traps. My system would

likely mitigate both of these issues - members will be

informed on how to reset traps, and data would be

collected even before someone turns up to reset it.

Both Dr and I often look in traps when we

stumble upon them in the outdoors. She admits that she

would likely plan her weekly bushwalks to pass a trap

that needs resetting. A 2017 Mountain Safety Council

report found that more than 900,000 Kiwis tramped

that year. If even a tiny subset of these people reset the

traps they came across, many more pests may be

eliminated.

15 DEVELOPMENT

DRAWINGS, STAGE 2

15.1 FINDINGS AND CHANGES FROM

CLIENT FEEDBACK
Findings

• Antennae must be removable, yet still be

waterproof when connected.

• Weight should be minimised where possible.

 TrapApp: Development Drawings, Stage 2

43

• Tool requirements should be minimised.

• I should avoid conglomerating data in my

system except for the essentials. It should be

available for easy, automated export.

• Public traps may be most useful in the

backcountry rather than urban areas.

Solutions

The main new problem is the question of how to make

the antenna removable. To achieve this, I will use a

cable gland, like I discussed in 9.1.6.2.3 Glands above.

Figure 49. A cable gland exploded view. The antenna is held
with a waterproof seal with the black ring.

15.2 OTHER CHANGES
Modelling the sheet steel caddy and other parts showed

some flaws with the design. These will be fixed in the

following ways.

• Change the shape of the exterior metal to allow

for mounting to the side of an object.

• Reduce weight where possible.

• Use non-galvanised steel and paint it.

• Increase tolerances in CAD, especially bend

radius of sheet steel parts.

• Change the shape of the plastic caddy to allow

for weld beads.

• The “flaps” resulting from cutting the lid

corners will be kept and used to aid welding.

15.3 DRAWINGS

 TrapApp: Spark’s LoRaWAN Network

44

16 SPARK’S LORAWAN

NETWORK

To develop and test my system, I needed access to a

LoRaWAN network. I could purchase my own gateway

and establish a private network, however accessing

Spark’s existing network would offer me more reliable

service over a wider range, and experience in integrating

my system with commercial LoRaWAN backends like

Spark’s.

I began by contacting their IOT Support email address

and explained my situation as a technology student. I

was advised to complete a "Connected IOT Low Power

Trial Application", which I did.

A few days later, I received an email welcoming me into

their IOT programme. I could access their Spark

backend (called “ThingPark”), and provision up to 5

devices on the network.

Figure 50. The ThingPark wireless backend interface, where
I could provision and configure LoRaWAN devices.

17 WORKING PROOF OF

CONCEPT

17.1 GOAL
After creating a working (though not perfect) RFM95

breakout board and getting access to the Spark network,

I decided to make a proof of concept. This goal of this

would be to transmit a message over the network when

a button is pressed.

17.2 HARDWARE

Figure 51. The RFM95 module in the breadboard.

A “breadboard” was used to connect the breakout board

to my STM32 microcontroller, as per the circuit

designed in 13.4.1 Circuit design above.

 TrapApp: Working Proof of Concept

45

Figure 52. The proof-of-concept hardware. It is connected to
a computer for programming and testing. All of these wires
will later be condensed into a circuit board.

I will not connect a GPS, voltage regulator, or battery

monitoring circuit as these are unnecessary for the

proof of concept and would make the breadboard wiring

even more messy.

17.3 NODE FIRMWARE
I now needed software to run for the STM32 to control

the radio. These are several libraries for this purpose. I

chose the fairly low-level, open-source arduino-lmic

library, maintained by the company MCCI.

There are higher-level options available, which would

make implementing them easier, however there are

three main disadvantages to these:

• Lack of control. This may mean I cannot put the

radio into the exact low-power state I want, or

any combination of other issues.

• Inability to transmit plain LoRa (not

LoRaWAN) messages from device to device.

This would be essential if I were to implement

mesh networking, as discussed in 9.1.1.2 To

Mesh, or not to Mesh above. Therefore, I would

rather face some initial difficulty learning the

library rather than have to completely replace

the library and rewrite my LoRa code at some

later date when I implement mesh.

• In a similar vein, extensibility. I would rather

have more features at a higher initial cost, even

if I don't initially use them, because it will save

a lot of headaches later if I have to change

library to accommodate them.

Therefore, I will use this library.

For my early tests of the radio, I simply use their

demonstration program, which transmits the same

packet ("Hello, world!") every 60 seconds. This basic

demonstration serves two purposes:

• Verifies that the radio is connected to the

STM32 correctly and is indeed transmitting.

• Verifies that the transmitted LoRaWAN packet

is received and understood by Spark.

17.4 TESTING AND DEBUGGING
I therefore put my device's identifying numbers into

both the Spark system and my device, then uploaded the

program to the STM32. Unfortunately, the device

consistently reported the following through its debug

output:

Starting

Packet queued

2700: EV_JOINING

239390: EV_TXSTART

641225: EV_JOIN_TXCOMPLETE: no

JoinAccept

Breaking this down:

1. Starting: the device has turned on.

2. Packet queued: a packet has been queued to be

transmitted.

3. The numbers at the start of each following line

are a timestamp.

4. EV_JOINING: the radio is attempting to join

the LoRaWAN networking with the OTAA

authentication method. See 9.4.4 LoRaWAN

flow above.

5. EV_TXSTART: The radio is beginning its

transmission.

6. EV_JOIN_TXCOMPLETE: no JoinAccept: The

transmission has ended, yet no reply has been

received from Spark's end. This is obviously not

ideal.

There are several possible explanations for this failure:

• The radio is not actually transmitting.

• The numbers I have input to the program are

incorrect, or somehow mismatched to Spark's

end.

• The radio signal is too weak.

The easiest thing to verify is that the radio is

transmitting. I used a device called a Software Defined

Radio (SDR), which allows me to ‘listen in’ to a wide

range of frequencies. I can therefore connect the radio

to the computer, tune to the correct frequency, make the

device send, and see if the SDR receives anything.

Luckily, it appears to transmit. This rules out one of my

failure modes. The other two are hard to differentiate,

however I hypothesise that my makeshift antenna is not

sufficient for the signal to penetrate indoors, which is

not really what LoRaWAN was designed for anyway. I

therefore go outside, and successfully receive a signal.

 TrapApp: Full Prototype

46

The following now appeared on the STM32 output:

1

2

3

4

5

6

7

8

9

10

Starting

Packet queued

2436: EV_JOINING

236574: EV_TXSTART

601184: EV_JOINED

netid: 6291470

devaddr: E01C14XX

AppSKey: 14-93-17-22-6E-62-18-0E-

4C-9B-31-XX-XX-XX-XX-XX

NwkSKey: 7B-B6-7B-84-56-C9-06-AC-

5A-D8-BE-XX-XX-XX-XX-XX

608844: EV_TXCOMPLETE (includes

waiting for RX windows)

Breaking this down from line 5 (lines 1-4 are the same

as before):

• EV_JOINED: The join request has been

accepted, so the node is now part of Spark's

network.

• Lines 6-9 show various encryption keys and

parameters that have been determined by the

OTAA join process. An understanding of what

these do can be attained from the link to the

LoRaWAN explanation.

• EV_TXCOMPLETE (includes waiting for RX

windows): The transmission is complete.

Unlike before, it has succeeded.

Spark's online LoRaWAN management software shows

the following information:

The signal received by Spark is rather weak, though this

is probably because of the lacklustre aerial. This also

explains why it did not work indoors – the building

blocked the already weak signal.

I then programmed the device to respond to a button

press, triggering it to send a packet.

17.5 VIDEO DEMONSTRATION
A video demonstration of this system working is

available here, on YouTube.

To summarise the video – the time when the last packet

was received was noted. I pressed the button (which

models the detector switch inside the trap). The

messages on screen show the node’s output when

transmitting, as above. After reloading the Spark page,

the time of last receipt has changed.

Despite having a very poor antenna, the signal still

travelled 871 metres (to the tower indicated by the

Spark software) in non-line-of-sight conditions. This is

promising for the future, as much stronger antennae

will be used, and transmission conditions will likely be

better.

Figure 53. The signal is travelling in non-line-of-sight
conditions, and with a poor antenna. Despite this, it works.

18 FULL PROTOTYPE

It is now time to make a functional prototype. As before,

there are three aspects to this: node hardware, server

software, and the app.

18.1 NODE HARDWARE
This consists of three components: the sheet steel outer,

the 3D printed plastic caddy, and the electronics that

inhabit the caddy.

18.1.1 Sheet steel housing

First, I will create an updated housing as per 15

Development Drawings, Stage 2 above.

I decided to start with the lid, as this could be tested

with the old box. Scale plans were printed onto normal

A4 paper, then glued to the sheet steel.

This piece of metal was cut and drilled to the correct size

using a bench shear and tin snips.

KathleeF
Highlight

KathleeF
Highlight

 TrapApp: Full Prototype

47

Hole-saws were used to cut the holes for the gland and

GPS antenna 'tower'.

The lid was then folded into shape.

The same process was now repeated for the base box.

This consists of two folded sheet metal pieces, which are

welded together. I will not show this whole process, for

brevity, as it is the same as before.

The box was only tack welded together – this is

obviously not waterproof, and I will complete welding

before deploying it in a wet area.

18.1.2 Caddy

When I redesigned the sheet steel housing, I also

updated the caddy to reflect the necessary changes as

determined by my client feedback. This caddy was 3D

printed.

The housing and caddy were now almost completed. As

noted, the hardware must be waterproofed.

18.1.3 Waterproofing

I need to waterproof the welds and other components.

Welding continuous beads onto thin sheet steel without

 TrapApp: Full Prototype

48

melting holes in it is difficult. Because of this, I will weld

in small pulses, limiting heat build-up.

These welds were ground down, removing excess weld.

I then went over all the spots I had missed again.

After a few repetitions, I was happy with the welds and

tested the waterproofing.

It appeared to be waterproof. In reality, it would never

be submerged like this, though it is good to check.

I then painted the box. This protects the exposed metal

(especially the areas I ground) from rust, and makes the

box slightly better looking.

The lid is one of the most critical components of the

node, in terms of waterproofing. This is because it will

bear the brunt of rain and weather.

To seal the lid to the base box, a thin bead of silicone

sealant is run around the perimeter of the lid. This

presses down on the rim of the box, forming a watertight

seal.

 TrapApp: Full Prototype

49

To seal around the GPS antenna tower's hole, an O-ring

is used.

This is compressed between the plastic caddy and metal

lid, preventing moisture ingress.

The gland through which the antenna passes is

waterproof by design. However, up to this point, the

antenna had an indent which allowed it to bend. This

indent would let water pass through the gland. To

remedy this, the indent was filled with araldite epoxy,

then covered with heatshrink.

18.1.4 Electronics

I spent a great deal of time at the functional modelling

stage developing a method to create circuit boards. A

summary of my method up to this point follows:

• Clean and spraypaint the blank copper-clad

board.

• Laser-cut the negative of the desired board.

• Wipe down the board with a wet rag.

• Place the board in an etchant solution - either

ferric chloride or copper chloride. This

dissolves away the exposed copper, but not the

painted areas.

• When this is finished (several hours), remove

the board, clean it, and remove the paint with

acetone.

• Drill holes.

Unfortunately, the extremely long etching duration led

to masked tracks being eaten away, since etchant would

creep under the paint. This was sufficient for a proof-of-

concept board, but would need to be improved for a full

prototype.

Further research suggested that etchant solution could

be applied with a sponge. The extra friction provided by

this would aid the removal of copper, meaning that the

etching would take much less time. This prevents

removal of paint, increasing the quality of the board.

This worked very well, bringing etching time down to

around 20 minutes. The previous issue of having a gap

between the pad and pin-hole was solved due to drilling

after etching, and the much-reduced etching time.

I now had to produce a new mainboard and RFM95

breakout for my prototype. Both boards were made in

parallel. First, I cleaned the copper-clad board to allow

the most efficient etching.

Figure 54. The "mainboard” design to be etched. The RFM95
breakout board design remains the same, designed by attexx.

The board was spraypainted and laser-cut, as per

13.4.2.4 Laser cutter masking above.

Note the grey residue covering the copper tracks. This is

chemically reacted paint, which can be removed by

wiping with methylated spirits or water.

 TrapApp: Full Prototype

50

The board must now be etched. The aforementioned

sponging technique was applied with great success.

The mask was now removed with acetone.

I am very happy with the quality of this board. The

straight tracks have sharp edges, and are not eaten away

like before. The holes have plenty of copper to drill into,

meaning I won’t have trouble with gaps between the pin

and pad.

When the PCBs were made, it was time to attach

components. At this prototyping stage, I will not attach

the GPS as this is not essential for the device to function

normally, and getting it to enter and stay in the optimal,

low-power mode requires a lot more research.

The radio module was attached with a piece of tape to

prevent shorting on the bottom of the board.

A similar process was repeated on the other

components, and other board.

 TrapApp: Full Prototype

51

The voltage regulator and battery voltage monitoring

circuit were added.

A small removable ‘wiring loom’ was created to connect

the external SP13 plugs to the mainboard.

It was also necessary to connect the battery to the caddy,

so the barrel connector was added.

18.1.5 Battery fitment issues

Unfortunately, when installing the battery pack, I found

that it was too thick - the supplier’s dimensions of the

pack were for when the pack was empty, not when

batteries were installed.

This was an easy enough fix – the CAD model

dimensions were adjusted, and a new caddy was 3D

printed, this time in a nice burgundy red colour.

 TrapApp: Full Prototype

52

18.2 NODE FIRMWARE
It was now time to implement the state machine

designed in 9.4 Software: node firmware above.

The bulk of this programming was relatively easy;

although I ran into a strange error while attempting to

get the microcontroller to enter sleep mode to save

power whilst in the SLEEPING state. For some reason,

it would intermittently enter sleep mode, then instantly

exit it. Sometimes this error would occur, and other

times it would not. Obviously, I needed this behaviour

to be reliable.

I initially suspected the problem to be power-related. I

tried another power source to little avail – the problem

was still as intermittent and confusing as ever.

I next began to suspect the “wakeup” pin on the

microcontroller. The STM32 has several sleep modes.

The sleep mode I was aiming to get into was

“deep_sleep”. This sleep mode could be exited via an

interrupt or a timer alarm, just like I needed. Another

sleep mode, “shutdown”, required a rising edge on this

pin to wake up. Since the pin was not connected to

anything, it was “floating”, meaning the voltage would

fluctuate randomly. I hypothesised that the random

fluctuations were triggering the wakeup pin, causing the

microcontroller to instantly wake itself up from

deep_sleep mode. I connected this pin to ground,

forcing it to remain at 0V. This, too, did not work, which

makes sense – the wakeup pin is only supposed to do

anything in shutdown mode.

After some more research, I began to suspect that I had

a counterfeit STM32, which had some minor hardware

differences which caused sleep mode to fail. I tried on a

different board with the same results, though I would

not be surprised if these are both counterfeit – such

counterfeits are very prevalent.

Until this point, I was using the STM32LowPower

library to enter deep_sleep mode. This handles all the

complicated low-level tasks, including:

• Disable interrupt requests (IRQ).

• Configure wakeup modes such as UART, timer,

and interrupt wakeups.

• Enter deep sleep mode using the low power

regulator (instead of the main regulator).

While experimenting with running these individual

functions manually, instead of through the library, I

discovered that using the main regulator instead of the

low-power regulator worked. This implies that the

counterfeit STM32 has a non-working low-power

regulator. Therefore, I re-implemented the library’s

deep sleep function with the necessary changes. This

worked well for sleeping my device.

Figure 55. Programming and testing the device.

18.3 SERVER SOFTWARE
In 13.5 Server software above, I planned a NodeJS-

based backend API. This plan remains mostly

unchanged. Several database models were linked

together with various relationships. For example, a

group may contain multiple users and multiple traps. A

user may be a part of multiple groups. A trap may also

belong to multiple groups.

18.3.1 Models and routes

To create a working prototype, several of these models

and interactions needed to be implemented. I

implemented:

• User

• Profile (partial)

• Group

• Trap

• Catch

I have not yet implemented these models, as these are

not necessary for a basic prototype:

• Image

• Profile (fully)

• Post

• Comment

I have implemented the following routes:

Name Description
Register Register a user into the system
Login Log in to the system
List all traps List all traps
Query user details Get a user’s details
Create user profile Create your own profile
Edit user profile Edit your own profile
Create trap Add a trap to the system
Process catch from
ThingPark

Called by ThingPark when the
trap sends a message

Catered traplist Get a list of nearby triggered
traps

List groups List all groups in system
Create group Create a new group
Rename group Rename a group
Delete group Delete a group
Add traps to group Add traps to a group
Add users to group Add users to a group
List traps in group List traps in a group
List users in group List users in a group

 TrapApp: Full Prototype

53

While beginning to implement the mobile phone app, I

realised that I needed to make the outputs of each route

more formal. At this point, each route might return

different pieces of information depending on various

internal factors. For example, a "Get catered trap list"

query would not return an error field if there was no

error, and would return no trap list if there was an error.

This is problematic when developing the app, since it

needs to know exactly what to expect, regardless of

whether it failed or succeeded. Datatype was another

issue - data can be classified into one of several types.

An error is of the error datatype, a UUID is of the string

datatype, a catch date is of the Date datatype. If the

datatypes being sent by the server do not match the

datatypes expected by the app, problems will occur.

18.3.2 Statically typed interfaces

To solve this problem, I migrated my server software to

TypeScript. This is a derivative of JavaScript that has

'strict' data types, rather than JavaScript’s dynamic

typing. This makes it much easier to formalise each API

route.

To do this, I created an 'interface' or 'model' for each

route. This is exactly what it sounds like - a model

version of a response, acting as an interface between the

app and server. Note this is a similar concept, though

different execution, of the database models previously

discussed. It describes the name and type of each field

returned, allowing for standardisation and

formalisation between the app and server.

Here is an example of the model response for the login

route:

The name of the interface is LoginResponseModel,

because it is a model object for a response to a login

query.

This response has three fields: success, token, and error.

Even if there is no error, a dummy error object will be

returned, since the same three fields must be returned

every time.

The types of these fields follow on the right of their

names, after the colon. Success is a boolean (a true or

false value), describing whether the query succeeded or

not. Token is a string of characters. Error is a custom

type I made, which describes any one of several errors

that could be encountered by the server while

attempting to process a request.

Once these routes were implemented with statically

typed interfaces, I was ready to create the app.

18.4 APP
I anticipated this aspect of the software to be the most

challenging - I had extremely limited experience with

app-making and had already decided to use an app

framework completely new to me: Flutter.

The good thing about Flutter is that you write code once,

and it is compiled to many different systems, including

Android, IOS, web browsers, and Windows/Mac/Linux

desktop. This is enormously useful, because otherwise

code would have to be written in each of these

separately.

Flutter uses the Dart programming language. This is

also new to me, though it is quite like C++, which I am

familiar with.

18.4.1 UI Design

The basic concept in Flutter is the 'widget'. The app

consists of multiple widgets nested inside each other -

for example, a Scaffold widget (sets up page, header bar,

bottom button bar) may contain a Center widget

(centres its children), which contains a text widget

(displays some text).

My app design consists of several main tabs, linked

together by a "BottomNavigationBar" (referred to as a

tab bar in the concept), like Instagram.

Figure 56. App UI concept.

As with the server, I will first make only the functions

necessary for a working prototype. This is primarily the

 TrapApp: Full Prototype

54

map page, which shows nearby traps and allows them to

be interacted with individually. A preliminary login

page is also needed, though this will later be integrated

into a settings page.

18.4.2 API requests

To log in, fetch trap data, and conduct all the app's other

functions, requests must be made to the backend server.

These requests must follow a formal predetermined

structure, with regards to fields and field types (18.3.2

Statically typed interfaces above). For this reason,

interfaces mirroring those used on the server are used

for all requests.

Below is the login response model in Flutter. Note the

similarities to the NodeJS model in 18.3.2 Statically

typed interfaces.

18.4.3 Stored or load-on-demand

Several pieces of information must be stored between

app restarts, such as username, password, and

authentication token - the user does not want to have to

log in every time they start the app.

On the other hand, it is not desirable to store other

pieces of information like trap locations (these may

change and become outdated) and posts (these rapidly

become outdated and waste storage space).

To store information on the phone's local storage, I will

use the shared_preferences Flutter library, which is

designed for this exact purpose. Data to be stored is

labelled with a 'key', which may be searched on at any

time.

18.5 APP

Figure 58. I have zoomed in to the traps and tapped on one.
This shows a popup of the trap's information.

Figure 59. The "Me" page shows some basic information
about the user. Eventually, it will display groups, friends,
and posts.

Figure 57. The
prototype login page.

 The email address has
been retrieved from
shared_preferences, as
I logged in earlier.

The password is not
shown for security
reasons.

As discussed above, this
login page will not have
its own button on the
BottomNavigationBar

 TrapApp: Testing in Environment

55

18.6 DETECTOR SWITCH
It was now time to attach the node to the trap. This

requires a detector switch specific to the chosen trap, as

discussed in 9.1.7 Detector switch above. I opted to use

the Victor Professional rat trap over the DOC200, as I

did not want to place neighbourhood pets under any

unnecessary risk – even though the DOC200 is

designed to only catch rats and stoats, there is still a

small chance.

In 11 Concepts above, I created some detailed designs

for attaching a detector switch to the trap mechanism.

Due to time constraints, I opted to use a simpler

solution for the prototype’s detector switch.

The ideal location for the microswitch was marked, then

the switch was glued with Araldite epoxy.

The wiring was then completed – the switch was

connected to the male end of the SP13 plug.

The whole assembly was mounted to the trap.

19 TESTING IN

ENVIRONMENT

The system was now functional, so was ready for a real-

world test. First, I demonstrated its functionality in this

video:

https://www.youtube.com/watch?v=oHxw4lMh9e4

In this testing, I wanted to find out:

• Does the node survive the elements for an

extended period of time?

• Does the node communicate with the Spark

LoRaWAN gateway?

• If yes, how reliable is the connection, and what

is the signal strength?

• If a catch is made, does the rest of the system

work? Do I check the app and notice a change?

• Does the battery voltage drop significantly?

The node was programmed to “phone home” every

hour. This allowed me to know exactly how the trap was

working, and when signals weren’t getting through.

The trap was placed in a quiet location in which rats and

other predators were most likely to inhabit and mostly

left alone for 6 days.

Figure 60. The trap in its new home.

Unfortunately, the trap did not catch anything. Despite

this, I still yielded valuable data from this test.

Since the trap was supposed to phone home every hour,

I could plot each signal received. Any gaps in the signals

mean that a transmission did not make it through.

Figure 61. Each dot shows a transmission received from the
trap. A gap indicates a missed transmission.

There are clearly a few missed transmissions, though

the vast majority of packets are getting through. It must

be noted, as in 17 Working Proof of Concept above, that

the radio is operating in non-ideal conditions – it has no

line of sight to the receiver. Of course, we cannot

guarantee that the real trap will have ideal line-of-sight

conditions, so it is important to know that the node

performs acceptably everywhere.

We can also plot the RSSI of each received transmission.

RSSI (Received Signal Strength Indicator) tells us just

that – the power of the received signal. A higher number

is better, since the signal is more powerful.

KathleeF
Highlight

 TrapApp: Stakeholder Feedback, Round 2

56

Figure 62. The RSSI over the course of the evaluation period.

The RSSI appears to be quite stable, with a small

amount of spread in the y-direction. Most spread

appears to be above the trend-line, which may indicate

that performance gets better, but not worse. In actual

fact, this is more likely to be an example of survivorship

bias – only signals which are above the trend-line are

strong enough to be received, so we do not see much

scatter below the trend-line since those examples do not

make it through.

The battery voltage was initially around 6.2 volts. Over

the course of the trial, this dropped to around 6.0 volts.

I am unsure whether to be worried about this change.

On one hand, this is a fairly significant drop over a mere

6 days. On the other hand, battery voltages naturally

drop much quicker towards the starts and ends of their

discharge cycle. Also, the node is transmitting a packet

every hour, which could be consuming a lot of power.

More research is warranted.

20 STAKEHOLDER

FEEDBACK, ROUND 2

I again contacted my stakeholders, Prof

of UoA and Olivia Rothwell of PF2050.

’s full letter is included at the end of this report.

She was very positive about my project, describing it as

a “virtuoso piece of technology”. As a statistician, she

naturally identified it as a useful tool in data collection,

especially in the urban backyard environment. Her

main question was also data related – she asked,

“whether the app allows users to edit the data-log entry

– for example if a trap is deliberately set off (as on the

video), is there a way to record that this was a false

trigger and not a real rat?”. At this point, there is not –

this is due to the software’s lack of maturity. In a more

complete version, however, this would certainly be

possible, for both private and public traps.

 had many questions. She made the important

point that a low BOM cost is good, but a company must

pay its costs and employees, and make a profit

somehow. Existing companies invest a lot of time and

money into helping customers set up their technology.

This is related to my goal of accessibility – I want to

make a system which can be set up by almost anybody

without requiring expert help, which would reduce

these costs. Also, a shift from the use of expensive

development boards to discrete components would

come with a drop in BOM costs. However, my other

production costs remain high due to laborious sheet

steel work.

 liked the idea of gamification. She made the point

that shifting between communications protocols will be

expensive, and it may be better to stay in the city where

Spark’s LoRaWAN coverage is available. While

installing connectivity off-grid would be costly, the

same node hardware and software could be used, due to

LoRaWAN’s adaptability. Mesh networking would

further reduce this cost and hopefully make installation

easier, since range concerns would be minimised.

She emphasised the need for extensive testing before

putting my product to real-world use. She also provided

a link to the Predator Control Data Standard, for data

export to other systems. This is quite similar to how I

store data internally already, so would be relatively easy

to implement.

She highlighted the importance of “innovators like you

[me]”, and the availability of R&D grants to projects like

this.

21 SUSTAINABILITY

As a device intended to benefit the natural world, it is

essential that the materials used do not cause it harm.

As such, I shall discuss each material and its

sustainability.

21.1 SHEET STEEL
Sheet steel was used to construct the outer housing.

Steel can be recycled an infinite number of times and is

thus considered by many the most sustainable metal'

(Cain, 2020).

21.2 PLA (POLYLACTIC ACID)
PLA is used in the 3D printed internal caddy.

PLA is made from plant starch and is both recyclable

and compostable (in the correct conditions). My

product is designed in such a way that would make reuse

of this part easy, meaning that even if a node is broken

(e.g., from water damage), it is likely that the caddy

would survive and could be reused.

21.3 BATTERY (NIMH, D-CELL)
NiMH batteries are used to power the device.

My device accepts any D-size battery, meaning that

rechargeable NiMH batteries can and should be used, as

opposed to disposable batteries. Their rechargeability

means that they will last much longer than disposable

batteries. When they are worn out, they can be recycled.

Nickel is not a ROHS metal, however it does have some

environmental impact, which can be minimised

https://pf2050.co.nz/data-standards/

TrapApp: Evaluation and Moving Forward

57

through correct recycling procedures (McMahon,

2013).

21.4 FIBREGLASS CIRCUIT BOARDS
PCBs are used to host the electronic components used

in my device.

Circuit boards make up the bulk of e-waste, which is

currently a large problem for the world. One main

reason for this is the nature of consumer electronics -

every year, a new, shinier device is released, meaning

that all the old ones are thrown out. This will not be the

case with my device, which (hopefully) will receive few

hardware iterations, so will remain in use for a long

time. Circuit board recycling does exist and is aided by

the use of non-hazardous electronic components, such

as lead-free solder. Lead-free solder has a higher

melting temperature than normal leaded solder,

making it harder to work with. As such, it is not feasible

for my prototype to use lead-free solder. My prototype

uses several individual electronic 'modules' soldered

onto a main board. When my prototype is no longer

useful, these modules can simply be removed and

reused individually for some other device, minimising

waste (EPA, 2012).

22 EVALUATION AND

MOVING FORWARD

This project was a success. I produced a functional

prototype which completed almost all the functions of

the existing commercial options for a small BOM cost.

Despite this, I did not complete all the points on my

brief – this make sense, since my brief described a

system complete with gamification and all other

features, which would reasonably take more than a

school year to produce.

22.1 FITNESS FOR PURPOSE
As shown by my evaluation period, the node hardware

works quite well in its environment. The radio link is

acceptably reliable. The system replicates most of the

features of commercial options.

For me to be comfortable deploying the node in a public

place, a GPS system would have to be active. This is not

currently the case, though would not take much more

effort. As it stands, this aspect of the system is

completely usable for my secondary and tertiary

stakeholders – those on private land.

The system is not currently fit to publicise traps and

promote volunteering via the app. This would primarily

be a matter of improving the software.

22.2 IMPROVEMENTS
There are several things which I would like to add to the

system, or change, to meet my brief or meet it better.

22.2.1 Things to add

• Complete the app and server software, including

adding gamification and social media features.

• Make the node configurable by the end user, via

the same app.

• Negotiate a way for end users to pay for Spark

network access via a TrapApp company.

• Develop a TrapApp LoRaWAN gateway, or add

the ability to use an arbitrary LoRaWAN network

so any gateway could be used.

• Add the GPS module to the node, completing its

intended feature set.

• Add mesh networking to the node. This is almost

exclusively a software change to the node’s

firmware.

22.2.2 Things to change

• Make the housing easier and cheaper to

manufacture – currently, all the sheet metal work

takes a very long time which is not feasible for

mass-production. A material change (e.g., from

metal to plastic) could be considered, though

extensive strength testing must be completed.

• Investigate voltage regulator performance. Initial

tests suggested that the advertised specifications

were not accurate, to nobody’s surprise. A linear

regulator may be more efficient with this low

current draw.

• Further investigate why sleep mode would not

work with the low-power regulator, as using the

main regulator consumes extra power.

• Improve radio performance of the node. The

current radio operates at 20dBm, which is much

less than the 30dBm legal limit. Significant radio

performance benefits may be yielded by changing

this, though finding a 30dBm radio module

appears to be challenging.

22.3 MOVING FORWARD
Next year, I will be studying engineering at university.

This means that this project will have to be shelved.

Nevertheless, I have learned an enormous amount

about conservation and this technology.

It is possible that I will revisit this project later in my

life, perhaps as a university project, or even a business

– if someone hasn’t made a fully-working version of my

idea by then.

23 REFLECTION

I can say with certainty that this is the most complicated

engineering project I have completed. It is also my first

‘full stack’ system – it has hardware, firmware, a server,

and an app. Getting all of these components to integrate

was certainly a challenge, and I learned a great deal.

I have learned a significant amount about the

technologies involved – I started with next to no

background in app development, LoRaWAN, STM32

use, developing a working API/database server,

TypeScript, etc. I used the knowledge I already had to

work up to these heights, making the learning process

TrapApp: References

58

much more manageable – for example, I began by using

the relatively-familiar NodeJS and eventually identified

a need which required me to upskill into TypeScript.

This change was made easier by my inherent

understanding of the context where TypeScript would

be useful (since I had just run into the problem), and

some motivation to learn it.

I could definitely have improved on my time

management – I spent nearly an entire school term

developing and refining my circuit board production

process (another thing which I initially had very little

experience in). If I had spent a bit more time

researching and less time making failed test pieces, I

might have discovered the sponging technique earlier

and saved time. Alternatively, I could have simply

ordered boards from a manufacturing company, since I

didn’t end up changing them that much. Of course, I was

working simultaneously on other aspects on the project,

so not all was lost.

I am fairly happy with the compromises I made because

of my lack of time. I did not become bogged down

insisting that everything must be perfect. For example,

I deferred implementing GPS despite having already

invested some time into researching it. I would have

liked to have made a more complete software package,

however it was the same time constraints that prevented

this. In some ways, software is the best part of the

project to be underdeveloped – there is a physical

product to show, and it completes a function linked to

an app.

As well as learning about the technologies involved, I

learned a huge amount about the nuances and details of

conservation. I have become more conscious of the

immense amount of volunteer, scientific, and regulatory

work surrounding the protection of our native species.

It has also given me a new perspective of the role of

engineers and scientists in sorting out this mess –

conservation requires input from everybody, not just

the bush-whackers working on the ground. I look

forward to my continued involvement in conservation.

Thank you again to all those who helped with my

project.

24 REFERENCES

Cain, M. (2020, December 11). Is Steel A Sustainable
Design Material? Retrieved from RealSteel
Center:
https://realsteelcenter.com/blogs/interior-
design-tips/is-steel-a-sustainable-design-
material-the-answer-might-surprise-you

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011).
From game design elements to gamefulness:
defining "gamification". MindTrek '11, 9-15.

DOC. (2021). Predator Free 2050: Practical Guide to
Trapping 2nd Edition. Wellington:
Department of Conservation.

Environmental Protection Agency NZ. (2006). 1080
Reassessment Application. Environmental
Protection Agency NZ.

EPA. (2012, October). Printed Circuit Board Recycling
Methods. Retrieved from EPA:
https://www.epa.gov/sites/default/files/2014-
05/documents/handout-10-circuitboards.pdf

Forest and Bird. (2018, April 16). Frequently Asked
Questions about 1080. Retrieved from Forest
and Bird:
https://www.forestandbird.org.nz/resources/f
requently-asked-questions-about-1080

Hamari, J. (2019). Gamification. The Blackwell
Encyclopedia of Sociology, 1-3.

Jones, C., Warburton, B., Carver, J., & Carver, D. (2015).
Potential Applications of Wireless Sensor
Networks for Wildlife Trapping and Monitoring
Programs. Wildlife Society Bulletin, 39(2):341–
348.

Lieberoth, A. (2014). Shallow Gamification: Testing
Psychological Effects of Framing an Activity as
a Game. Games and Culture, 10 (3): 229–248.

McMahon, R. (2013, March 12). How to choose the most
sustainable battery for small portable devices?
Retrieved from Stack Exchange:
https://sustainability.stackexchange.com/ques
tions/616/how-to-choose-the-most-
sustainable-battery-for-small-portable-devices

Meek, P. D., Ballard, G., Milne, H., Croft, S., Lawson, G.,
& Fleming, P. J. (2020). Satellite and
telecommunication alert system for foot-hold
trapping. Wildlife Research , 48(2) 97-104.

Ministry for the Environment & Stats NZ. (2019). New
Zealand’s Environmental Reporting Series:
Environment Aotearoa 2019. Ministry for the
Environment and Stats NZ.

Norton, D. A., Young, L. M., Byrom, A. E., Clarkson, B.
D., Lyver, P. O., McGlone, M. S., & Waipara, N.
W. (2016). How do we restore New Zealand's
biological heritage by 2050?. Ecol Manag
Restor, 17: 170-179.

Royal, T. A. (2007, September 24). Kaitiakitanga –
guardianship and conservation - Rāhui –
prohibitions. Retrieved from Te Ara - the
Encyclopedia of New Zealand:
https://teara.govt.nz/en/kaitiakitanga-
guardianship-and-conservation/page-6

Spiess, A. (2017, August 27). #155 The 5 Best Solar
ChargerBoards for Arduino and ESP8266.
Retrieved from Youtube:
https://www.youtube.com/watch?v=ttyKZnVz
ic4

Stock, R. (2018). Mycoplasma bovis slaughter pushes
annual cow cull total higher. Stuff.

Timoti, P., Lyver, P. O., Matamua, R., Jones, C. J., &
Tahi, B. L. (2017). A representation of a
Tuawhenua worldview guides environmental
conservation. Ecology and Society, 22(4):20.

Warburton, B., Jones, C., & Ekanayake, J. (2015).
Remote monitoring of traps using wireless-
based systems. Napier: Landcare Research.

 TrapApp: Professor Final Feedback

59

25 PROFESSOR ’S FINAL FEEDBACK

	2 Abstract
	3 Background
	3.1 Our unique environment
	3.2 What we’re doing
	3.3 How we’re doing it
	3.4 Moving towards 2050

	4 Proposed Solution
	4.1 Automatic traps
	4.2 Remote trap sensors
	4.3 Chosen direction

	5 Stakeholder Analysis
	6 Further Research of Context
	6.1 Scientific consensus on wireless trap monitoring
	6.2 Environment
	6.2.1 Weather
	6.2.2 Groundwater
	6.2.3 Vandalism and theft
	6.2.4 Animals and other mechanical stresses

	6.3 Trap dimensions and details
	6.4 Deployment of traps and nodes

	7 Brief
	7.1 System overall
	7.2 Hardware (node)
	7.3 Software

	8 Analysis of Existing Devices
	8.1 Table of existing wireless trap monitoring devices
	8.2 How we can be better
	8.2.1 Price
	8.2.2 Useability and access

	9 Research and Design, Pre-Concept Stage
	9.1 Node hardware
	9.1.1 Communication
	9.1.1.1 About the subsystem
	9.1.1.2 To Mesh, or not to Mesh
	9.1.1.3 NB-IOT (specifically CAT-M1)
	9.1.1.4 LoRaWAN
	9.1.1.5 Sigfox
	9.1.1.6 Custom radio
	9.1.1.7 Deciding on a radio system
	9.1.1.8 Choosing a hardware module
	9.1.1.9 Antenna

	9.1.2 Power
	9.1.2.1 Solar panels?
	9.1.2.2 Power storage
	9.1.2.3 Power regulation
	9.1.2.3.1 Why regulate?
	9.1.2.3.2 Linear regulators
	9.1.2.3.3 Switching regulators
	9.1.2.3.4 Choosing a regulator

	9.1.3 GPS
	9.1.4 Microcontroller
	9.1.4.1 What’s a microcontroller?
	9.1.4.2 Microcontroller options
	9.1.4.3 Microcontroller options
	9.1.4.4 Choosing a microcontroller

	9.1.5 Connectors
	9.1.6 Housing
	9.1.6.1 Material
	9.1.6.1.1 Sheet steel
	9.1.6.1.2 Plastic

	9.1.6.2 Waterproofing
	9.1.6.2.1 O-Ring
	9.1.6.2.2 Silicone sealant O-rings
	9.1.6.2.3 Glands

	9.1.7 Detector switch
	9.1.7.1 Microswitch
	9.1.7.2 Reed switch

	9.2 Some reference photos (mood board)
	9.3 Node full Bill of Materials (BOM)
	9.4 Software: node firmware
	9.4.1 The Arduino framework
	9.4.2 Arduino framework control flow
	9.4.3 Interrupts
	9.4.4 LoRaWAN flow
	9.4.5 State machines
	9.4.6 Required states
	9.4.6.1 Joining
	9.4.6.2 Preparing a packet
	9.4.6.3 Sending the packet
	9.4.6.4 Sleeping
	9.4.6.5 Verify Trap State Change
	9.4.6.6 Periodic Wakeup Check

	9.4.7 State machine flowchart

	9.5 Software: app
	9.6 Software: server
	9.6.1 Libraries
	9.6.2 About APIs
	9.6.3 “Groups” concept
	9.6.4 Structuring the application
	9.6.5 Hashing passwords
	9.6.6 Persistent authentication

	10 Stakeholders
	11 Concepts
	11.1 Trap concept 1
	11.2 Trap concept 2
	11.3 Detector switch: Victor rat trap
	11.4 Detector switch: DOC200 microswitch design
	11.5 Detector switch: DOC200, reed switch design
	11.6 System architecture concept

	12 Development Drawings
	13 Modelling and Development
	13.1 Cardboard modelling
	13.2 Caddy
	13.2.1 About 3D printing
	13.2.2 Slicing
	13.2.3 Printing
	13.2.4 Evaluation of print

	13.3 Sheet steel housing
	13.3.1 Evaluation of caddy

	13.4 Electronics
	13.4.1 Circuit design
	13.4.1.1 GPS
	13.4.1.2 RFM95 radio
	13.4.1.3 External connections

	13.4.2 Printed Circuit Boards
	13.4.2.1 What’s a PCB?
	13.4.2.2 How to make a PCB
	13.4.2.3 Toner transfer
	13.4.2.4 Laser cutter masking

	13.4.3 Evaluation of PCB making

	13.5 Server software
	13.5.1 List of required routes
	13.5.2 Models

	14 Stakeholder Feedback, Round 1
	14.1 Predator Free 2050 (Olivia Rothwell)
	14.2 Prof. Rachel Fewster

	15 Development Drawings, Stage 2
	15.1 Findings and changes from client feedback
	15.2 Other changes
	15.3 Drawings

	16 Spark’s LoRaWAN Network
	17 Working Proof of Concept
	17.1 Goal
	17.2 Hardware
	17.3 Node firmware
	17.4 Testing and debugging
	17.5 Video demonstration

	18 Full Prototype
	18.1 Node hardware
	18.1.1 Sheet steel housing
	18.1.2 Caddy
	18.1.3 Waterproofing
	18.1.4 Electronics
	18.1.5 Battery fitment issues

	18.2 Node firmware
	18.3 Server software
	18.3.1 Models and routes
	18.3.2 Statically typed interfaces

	18.4 App
	18.4.1 UI Design
	18.4.2 API requests
	18.4.3 Stored or load-on-demand

	18.5 App
	18.6 Detector Switch

	19 Testing in Environment
	20 Stakeholder Feedback, Round 2
	21 Sustainability
	21.1 Sheet steel
	21.2 PLA (polylactic acid)
	21.3 Battery (NiMH, D-cell)
	21.4 Fibreglass circuit boards

	22 Evaluation and Moving Forward
	22.1 Fitness for purpose
	22.2 Improvements
	22.2.1 Things to add
	22.2.2 Things to change

	22.3 Moving forward

	23 Reflection
	24 References
	25 Professor Fewster’s Final Feedback

