
Scholarship 2022
Technology

TOP SCHOLAR EXEMPLAR

No part of the candidate’s evidence in this exemplar material
may be presented in an external assessment for the purpose

of gaining an NZQA qualification or award.

SUBlime Substitution Manager

Video: https://www.youtube.com/watch?v=HVfE5bsWX5A
Download: Available on App Apple Store and Google Play Store

2

Introduction
The benefits of children playing sport are manyfold. One of the key recommendations of the World Health
Organization’s Commission on Ending Childhood Obesity was the promotion of physical activity1. Physical
activity prevents early onset of childhood obesity and related negative health outcomes. Sport is also
protective of mental health; being an equal part of an inclusive team helps build resilience and esteem in a
child.

Identified Problem
Unequal gametime in junior sports is a major issue that continues to fail to be addressed. Young players who
get less gametime than their teammates are made to consider their worth within the team, breeding feelings
of insecurity and inadequacy. This may evoke feelings of disinterest and boredom as they begin to associate
a game of sport with sitting on the bench for most of the match.

Unequal gametime also erodes team culture. Players may lack confidence when they play as they fear one
minor stuff up could get them benched for the rest of the match. Feelings of discontent also develop between
players and coaches, as players believe that the coach doesn’t value them as a member of the team. These
feelings are extrapolated by parents who rightfully support their kid and question the coach’s judgement,
worsening team culture as parents and coaches become further divided. This makes parents less likely to
encourage their kids to play sport as they feel their time and financial commitment of having their child in a
sports team is not being valued. If a coach aims to pursue fair and equal gametime this requires so much
micromanaging, that it is detrimental to their ability to coach and develop skills of young players.

The end consequence of this is kids simply don’t enjoy playing sport. This is reflected by 75% of kids dropping
out of sport by age 132. The ramifications of this are major. Children stop playing sports into the future and
miss out on a wide range of benefits. Physically, they participate in less exercise resulting in higher chances
of diabetes and other related diseases. Socially and mentally, they miss out on making lifelong friends and
being valued as a part of a team. Also, without young players continuing to play sport, sport breaks down at
a grassroot level as teams can no longer be fielded, to the detriment of wider communities.

Solution to Identified Problem
The idea for a solution to this problem came to me at the start
of this year. I was reaching out to friends and family for potential
ideas for digital technology projects. An idea was suggested by
my dad for a digitalized solution to the ‘subsheets’ he used for
the hockey team he coached. He explained how every week he
would create a subsheet on Excel – that would show substitution
orders of his game - then print it out and put it on the dugout
wall for players to look at. This process of creating a subsheet
took a very long time and therefore he believed he could benefit
from having it digitalized, allowing him to make them and display
them on his iPad.

This discussion served as the starting point for the development of this project. I saw the potential in having
digitalized subsheets but believed their best application would not lie in competitive sports grades but
instead in junior and social sports grades. This gave birth to the idea of SUBlime. SUBlime would be a
substitution management mobile app that allowed coaches to create digitalized subsheets. The allocation of
time to players on these subsheets would be collated into gametime allocation statistics for both individual
games and across seasons. These statistics would be presented in a way to be easily screenshotted so they
could be sent out to parents, serving a dual purpose of forcing coaches to allocate gametime equally and
reducing parent-coach tension as they know that their kids are getting equal gametime. Alongside this, a
game overview feature would also exist in this app. This feature would be used during the game having a

1 https://apps.who.int/iris/bitstream/handle/10665/204176/9789241510066_eng.pdf
2 https://www.youthsportspsychology.com/youth_sports_psychology_blog/when-kids-drop-out-of-sports-because-of-
little-playing-time/

Excel made subsheets. The subsheet shows when each player is on the pitch
and what position their playing at. Total gametime is on the right. side

https://apps.who.int/iris/bitstream/handle/10665/204176/9789241510066_eng.pdf
https://www.youthsportspsychology.com/youth_sports_psychology_blog/when-kids-drop-out-of-sports-because-of-little-playing-time/
https://www.youthsportspsychology.com/youth_sports_psychology_blog/when-kids-drop-out-of-sports-because-of-little-playing-time/

3

countdown to upcoming subs. This would provide an additional benefit alongside encouraging equal
gametime, in the form of the promoting self-management in junior sports players as they could now see
when their sub is occurring allowing them to carry it out independently of the coach. This would also allow
benched players to feel involved without being on the pitch as they need to actively check for when they
next sub on. Additionally, this also allows coaches to devote their focus towards coaching as they don’t have
to micromanage subs.

Preproduction
With a clear problem identified and a practical solution found I now moved to pre-production. Pre-production
is the planning phase of a project. I viewed it as essential to put aside substantial time towards preproduction,
so I could seamlessly move into the development of SUBlime with a clear creative vision and milestones laid
out.

I broke preproduction into three phases

1. Refine and finalize the design of the project – through market research, stakeholder consultation and
creation of conceptual designs.

2. Identify the needs of the project and select development tools that address these needs.
3. Learn and develop my skillset with any development tools I hadn’t used before to prevent time being

wasted early in the project due to my incompetence.

Project Timeline
The first task I completed in preproduction was the creation of a project timeline. This timeline would contain
key milestones of the project and dates for me to work towards.

Date Goal
Term 1 Week 3 Begin the preproduction phase of development.
Term 1 Week 8 Finish the design/tool selection process and begin developing my skills with the selected tools.
Term 2 Week 1 Finish Preproduction and begin development of a minimal viable product.
Term 2 Week 8 Finish minimal viable product and carry out first technical test.
Term 3 Week 1 Begin widespread testing with StAC sports teams and if time permits carry out testing with local sports governing bodies.
Term 3 Week 6 Finish the implementation of any feedback as must leave adequate time for the write up.
Term 3 Holidays Implement any final feedback and submit the app to Google Play Store and Apple App Store

First Meeting with A K
As I saw immense potential in the idea of SUBlime I wanted to get as many stakeholders as possible on board
to refine and test out the idea. However, I recognized that groups such as local sports governing bodies
(Christchurch Netball, Mainland Football etc..) that I wanted to work alongside, would likely only want to try
out and discuss the app if it was semi complete. Therefore, I decided to first keep the stakeholder base small
then expand it out as development progressed.

The principal stakeholder I decided to work alongside was A
K . A K is the Preparatory School sports coordinator at
my school. A K oversees the running of all sports codes in the
Prep School and therefore, valued the importance of getting juniors
engaged in sport. I sent an email to A K with the core idea of
SUBlime asking to organize a time to meet and discuss. He stated he
liked the idea and was keen to meet up and discuss it. In our
discussions A K stressed how much he liked the idea as both
a parent, coach and sports coordinator who has to constantly deal
with parents’ complaints about unfair gametime allocation. He
stated one of the Prep Schools’ sports values was inclusivity and this
app would go a long way in ensuring that. He said he’d be willing to
arrange testing with coaches from a wide range of sports. Finally, he
helped me finalize the idea of the minimum viable product and then
suggested we meet up again later in the term when I had some
designs completed.

4

Finalization of Features in Minimum Viable Product (MVP)
In the past, development projects I have worked on have suffered from scoping issues where I try and add
too many features into an app resulting in it never being finished. To combat this for SUBlime I decided that
from the start of the project I would target a strict MVP and then only when I achieved this add new features.

The four base features of the app I decided on based on with my consultation with A K were:

1) The ability to select a formation for players on the field.
2) The ability to add players to your team and assign them positions.
3) A digitalized subsheet that players can be assigned to. This would also show the gametime per player.
4) A game overview screen that would manage substitution automatically showing a countdown to all

the upcoming substitutions.

Further to this, initially I would only develop the app for hockey but once development progressed, I would
contact stakeholders of other sports to help me setup the app for that sport.

Market Research on Similar Apps
With an MVP defined I wanted to next carry out market research before continuing with designing. I focused
my research of them on two things. The first was whether any apps successfully fulfilled the desired purpose
of SUBlime – mainly the ability to create subsheets, view allocation of gametime and manage substitutions
automatically. The second was whether these apps had any unique and helpful features that I hadn't
considered and therefore may consider implementing into my designs. After searching on the App Store, I
found a few apps that marketed themselves as sport substitution apps. Out of these sports substitution apps
I looked at the three most highly ranked apps on the App Store. These apps were called SoccerSubstitution,
CoachAny and TeamCoach.

App One – SoccerSubstitution
This app was rated the 89th highest on the App Store sports charts, far higher than any of the other sub
management apps so I went in with high expectations. The first thing I noted about this app was that it was
online only meaning that coaches would not be able to use this app pitch side where they don’t have Wi-Fi –
this made me consider the importance of SUBlime working offline. More importantly in terms of features,
this app lacked features I viewed as crucial to my app such as the ability to create game subsheets and
overview gametime allocation. However, it had an extremely easy to use and understand player creation
system that made it easy to add and remove positions from players. I planned to use this player creation
system as the basis of my player creation system. This app also had a game overview screen, which was very
ugly, and I couldn’t get the timer to start. Additionally, substitution had to be done manually through the
coach’s actions during the match as opposed to doing them automatically based on a premade subsheet.

App Two – CoachAny
I found CoachAny to be a very stripped back and minimalistic version of what I wanted my app to be. The app
had an extensive settings screen which really gave me control as the user to setup the game how I wished.
Unfortunately, that was where the positives of the app ended. It lacked the four features I viewed as key to
my app. Alongside this, you were unable to assign positions to players in this app resulting in a complete lack
of control being provided to the user when it came to who was subbing on for who. The final issue was that
the game overview screen was really confusing as to who was subbing on for who and coaches had to
manually handle these substitutions during the match as opposed to – how I planned where - the
substitutions would be carried out automatically based on a premade subsheet.

5

App Three - TeamCoach
To put it lightly this app was awful. The user interface was confusing, and it took me five minutes to figure
out how to make a team. In addition to this, the app didn’t have the capability to manage substitutions in a
game and only provided a visual display of the starting line-up.

Conclusions From Market Research
At the end of conducting market research, I was feeling inspired. None of the existing apps resolve the issue
I wanted to address. None of them provided the capability to create subsheets, view allocation of gametime
and manage substitutions automatically. This showed me that SUBlime could stand as unique from others on
the app store and resolve an issue that has yet to be addressed by technology. A further weakness I noted in
all these apps was that their UX was not very good, meaning I could establish a further point of difference
with these apps by having good UX. Other things I noted from my market research was that I preferred apps
that gave the user more options and ability to customise their teams, alongside apps that worked without
internet.

Conceptual Design Process
I know had a clear vision of what the features in SUBlime would be, therefore it was now necessary to
transform these ideas into a creative reality. To do this, I created a conceptual design. Creating a conceptual
design served two purposes. Firstly, it creates a blueprint that I can work towards replicating when I begin
the development of my app. This will save me time later as I can focus on coding and not worry about the
design process as its already done. Secondly, by creating visualizations of SUBlime I can identify potential
issues with the design of the app early on, giving me greater time to address them.

Wireframes
The first step of the design process was the creation of
basic wireframe diagrams. Wireframes are blueprints of
an app which layout content and functionality. They
provide a basic structure of what each app page should
look like. In my wire frames I also worked to include
descriptions of core functionality. I created a wire frame
for all four of the features of the MVP.

Adobe XD designs
I next had to add more detail to these wire frames and
create a design that I would aim to replicate in my final
product. For this use of a higher end UI/UX design tool
was necessary. Adobe XD was my tool of choice for
doing this, as the school provided a free licence for me
to use it. The other benefits XD provided was that it had a large premade component library making the
designs easier to make.

App 2 – Unclear in the game overview screen that is hard to
interpret who is subbing for who. For example, both Toby
and Xavier are going on and Kyle and Corin off. But it isn’t
clear what position they’re subbing at and whose swapping.

App 3 – Home screen off app. It was very unclear what to
do on this page I tapped around on it for five minutes and
still couldn’t find anything

App 1 – Assigning position
portion of the player creation
system I liked.

Wireframes of all four features of MVP. Top Left – formation selection. Top
Right – Team management . Bottom Right – Subsheet Creation. Bottom Left –
game overview screen

6

The first page I designed was the game overview screen. This was the screen that was displayed to users
during a game. On this screen I would show upcoming subs to users whilst also showing key game information
and the layout of the field. On the left-hand side of the page, I decided to display game information alongside
the upcoming subs. The game info included who was playing and how long the game had been going for.
Below this info I displayed upcoming subs. Each upcoming sub had a countdown until the sub occurred, who
was involved in the substitution and at what position this substitution was occurring at. Then on the right of
the app I displayed the field of play. This shows a game pitch with all the initials of all the players on the field
in their positions.

The next page of SUBlime I designed was the subsheet creation screen. On the subsheet creation page I
wanted to have a slider for each player. On these sliders would be tile for each minute in the game interval.
A position could then be added to one of these tiles to signify the player playing this position at that minute.
Drag functionality of the slider would then allow the user to increase or decrease their time at a position.
Following the bar was a number showing how many minutes the player had been assigned. I showed these
designs to my digitech teacher asking if it met good UX conventions. He noted a few design issues.

• Players could only be placed in one category of forward, midfield and defence. There would likely be
cases were a player played in two of these categories.

• The design doesn’t allow specification of exact positions. For example, Rhys, Adam and Rico start as
forward but no description is provided as to what sub role they play as a forward ie left wing, centre
forward and right wing.

• It isn’t clear who is subbing on for who. Rhys and Adam both sub off at the same time. Likewise, Corin
and Harry sub on at the same time. It isn’t clear who is subbing for who in this situation.

Based on these issues I remade the design. This new design shifting
from displaying the subsheet in terms of players to position. The
subsheet shows each of the positions that the team uses. Each of
these positions has a slider that players can be added to and then
dragged to give more or less time at that position. This addressed all
of the design issues.

This was the final feature I did an Adobe XD design for as they were taking a large amount of time to do, and
I was satisfied with the wire frame designs I had for the other two features of the MVP.

Slider shown for each player showing their assigned time. On
left is total time for each player.

New design for Subsheet Creation Page

Second iteration of Adobe XD design for game overview.
Changes made is adding game info such as a game clock

First iteration of Adobe XD design for game overview
screen. Upcoming subs on left game overview on right.

7

Design Meeting with A K
Now with a physical design complete I organized a second meeting with
A K to discuss the designs and collect his feedback on them. A
K liked the designs expressing how it was nice to have something
conceptually complete. He agreed with my reasonings for redesigning
the subsheet creation page but rightfully pointed out that by
redesigning it I had removed the gametime per player. He stressed since
this was a key feature of SUBlime, and it would provide very little unique
value without tracking gametime, that I should implement a separate
page that showed game time stats for all players. Apart from that he was
very happy with progress made and suggested we met in a terms time
once I had developed an MVP for him to test out.

Project Management Setup
A common issues developers face when creating an app is that they run out of time, due to missed deadlines,
feature creep causing the project to become out of their control, or poorly managed codebases causing the
project to become unmanageable. As this was a project on relatively tight deadlines, I viewed it as necessary
to make use of a range of project management tools.

Trello
Trello is a project management tool that allows you to break
complex projects down into simpler parts. I had used Trello in
the past with other digitech school projects and therefore could
appreciate its usefulness and decided to setup a project board.
On this board I created three sections: Not started, Doing and
Done. I then started creating tasks and adding them to the not
started section. Each created task was assigned a tag for the
part of the project it made up. For example, I had tags for
subsheet creation, team creation and stakeholders etc.
Examples of tasks I made was for team creation I added a task
for a dropdown to add positions to players. With this set up I was able to have an overview of what tasks I
had to do and what I had completed. Throughout the project I moved tasks between the different sections.

GitHub
GitHub is almost a requirement for any software development project. It offers a range of functionality within
project development, but I only made use of it for basic version control. By maintaining version control I
would be able to easily rollback any changes to my code base that I regretted. This would allow me to save
development time as I could rapidly prototype and easily undo all my changes if I regretted them. Github
would also provide a backup in the unlikely event of a computer breakage or file deletion. I created a
repository for this project, then at the end of every development session I planned to commit to this GitHub
repo.

Word Document Journal
The final tool used was a Word document journal of sorts. On this document I kept a project calendar that I
would frequently check back on to make sure I was meeting project deadlines. Also, on this document I also
wrote a brief overview of every feature of SUBlime that I would come back to over time and refine. This
document also served as the basis of this written report as I would constantly take note of any key decisions
I made.

Development Tool Selection
A common adage is that you must have the right tools for the job. This adage is particularly true in software
development, were making an incorrect decision with the selection of a tool could spiral a whole project. If I
selected an overly complex tool, the project wouldn’t progress as I would constantly battle to understand
how everything works. If I selected an overly simple tool, it may lack functionality that I would need to
develop my app. Based on this, these decisions were key.

Wireframe design I made of time overview page following
meeting. Shows time played in last game, average gametime
and total gametime for each player. I sent this A K ,
and he said it was what he had in mind.

Trello board in use when I was overhauling the back end to add teams.

8

Mobile App v Website v PC Application
From the start of the project, it was clear that SUBlime would only work on mobile devices. This is because
you are required to bring the device SUBlime is installed on to the sports game. It is not practical to bring a
laptop or PC to a sports game therefore a device such as an iPad or large screen phone that could be put in
a protective case would be the best choice. This ruled out developing a PC application. Development of a
website was also ruled out as I wanted the app to be offline only. This meant the only viable option was a
mobile app. As I knew I wanted to develop an app I began looking at cross platform development frameworks.

Possible Development Frameworks
When deciding on a possible app development framework I made a few key considerations when narrowing
down my choices. The considerations were as follows.

• The framework must support cross platform development i.e. I develop a single codebase that builds
to both Android and iOS. This is to increase accessibility of the app.
 This would allow a uniform app to be brought to both solutions in half the time of developing

both natively.
 This ruled out using frameworks such as Swift or Android Studio with Java

• The framework must be widely used and therefore have a large number of available documentations
and libraries.
 This would make it easier to learn the language and save time in development as I could

make use of pre-existing libraries as opposed to developing my own
• The framework should be open source and be free to use.

 This reduces the initial cost of the project and makes it easier for me to go under the hood if
necessary due to it being open source.

• The framework should be in a language that I have some experience (HTML / JS / C# / Python)
 This eliminated all Java or C++ based frameworks

• The framework must be able to interpret user gesture input. This was because the subsheet creation
page required users to carry out drag motions to allocate time.
 This ruled out the use of PWAs as they do not have good support for native gesture input.

Based on these considerations I ruled out quite a few development platforms and ended up with three
possible frameworks that fulfilled all these criteria with these being Xamarin, React Native and Angular. In
addition to this I would also need to select a database to store my data, however I put this off for now and
decided to only make this decision later in development when it became clear to me what type of data I
would have to store.

Consultation with Tech Industry Veteran B L
With three possible frameworks decided on I reached out to
B L . B L is a tech industry veteran and has
multiple years of experience working on numerous
development projects across sectors of agriculture, finance,
and gambling. I had worked with B L in the past on
projects and was always left in awe with his depth of knowledge
on various development frameworks. I sent B an email
asking him what he would recommend, and I received an in-
depth reply. B recommended Xamarin but also provided
information and insight into how I would go about a more web-
based solutions such as React Native and Angular.

Evaluation of Possible Frameworks
With all this information I now needed to decide on a final framework to use. To do this I created a table that
evaluated the pros and cons of all these frameworks. X = best in category

Framework Bryn’s
Endorsements

Community support/
resources

Performance Development Environment Developed by a morally
dubious company

Xamarin Forms X X X X
React Native X X
Angular X

email of advice

9

Based on this my final decision for a framework was Xamarin with React Native second. I downloaded Visual
Studio and started playing around with Xamarin Forms with the intent of learning how to use it.

Visual Studio IDE
The final development tool I selected for use was the Visual Studio IDE. Ultimately there is very little
difference between development IDEs, but I have used Visual Studio Code in the past and therefore selected
it out of the familiarity it provided. Also, within Visual Studio Code I downloaded a range of extensions such
as Intellicode (that provides autocomplete suggestions), Prettier (to tidy up my messy codebase) and Bracket
Pair Colorizers (that makes it easier to determine which bracket matches up with which). Although these
extensions may seem superfluous the adoption of them makes small compounding differences which, makes
the development process a lot easier and stream-lined over time.

Change in Development Framework
About a week into my use of Xamarin forms I was starting to face some problems. Firstly, I was unable to test
my app on iOS. This was because I didn’t have an Apple device which was a requirement to build an app for
testing as you needed to run it through XCode. Although I could run an iOS emulator on my laptop this would
take about 15 minutes to compile due to how slow my laptop was. This was problematic as by continuing to
use Xamarin I would not be able to do any quality testing on iOS. Secondly, I found the learning curve of
Xamarin Forms to be quite steep and at times it seemed overly complex. Although I was very apprehensive
about changing framework, I believed these two reasons as enough to justify changing the development
framework. Additionally at this point in the project I was only a week into development and if I was to make
a change it would be best to make it now – whilst I had a lot of time remaining - as opposed to later in the
project. The framework I decided to swap to was React Native as based on the table I believe it was the next
best alternative.

React Native in simple terms is a cross platform app development app that allows users to create native apps
for iOS and Android. React Native is based on the React development framework which is a UI framework
built on ES6 Javascript. As I move through this report, I will provide explanations of all React Native features
on their first use in code.

Learning React Native
Like with Xamarin I put a week aside to learn React Native. I deliberately did this to ensure that I had at the
very least a basic understanding of React Native so I didn’t make any disastrous programming decisions early
on that would have negative repercussions later. Coincidentally, I also had Covid this week, so I was able to
really focus for a week on learning the React Native fundamentals. I followed Programming with Mash’s 5-
hour video tutorial.3 This tutorial taught me all the React Native basics whilst also providing an introduction
to higher level React Native concepts such as Redux, async storage and navigation.

Testing Methodology Throughout Development
Testing with stakeholders would be unfeasible and unpractical until the MVP was complete. I had agreed this
with A K at our second meeting as we both noted that it would require a large degree of effort and
coordination to organize a live test with a team for every newly added feature. We both believed the quality
of the feedback would not meet this required effort. Therefore, during development, I instead decided to
use my classmates for testing features as I developed them. I would carry out testing with a variety of
classmates some of whom play sports or coach teams as they would be able to provide insight as potential
future users of the app and others who are more technically minded who woukd try and find bugs in the app.
I would then send a fortnightly email to A K detailing development process and asking for his
feedback. Once the MVP is complete, I would then begin to carry out live tests with teams.

3 https://www.youtube.com/watch?v=ANdSdIlgsEw

https://www.youtube.com/watch?v=ANdSdIlgsEw

10

Development of Minimum Viable Product
Setting up Project File
When setting up a React Native project you can choose between two development environments. The first
option is Expo Go which is an SDK that provides a wide array of development APIs to use, Expo Go also carries
out project management and can manage dependencies. Expo Go also offers the ability to do across the
cloud testing without having to using Android Development studio or XCode. The second option is using React
Native CLI. React Native CLI lacks most of the SDK features provided by Expo Go and requires the use of XCode
and Android development studio to test the app. However, to make up for this React Native CLI allows users
to interact with the native code of the app. Although React Native CLI provided a more in-depth range of
features, it is a lot harder for beginners to use due to it lacking the SDK features of Expo Go. I decided to trade
off the functionality of React Native CLI for the ease-of-use Expo Go provided.

The install process of Expo Go is well documented on their
forums.4 First I installed Node JS. Node JS has multiple application
but the main reason I made use of it was to manage the installation
and maintenance of packages with its NPM (Node package
manager) feature. With this setup I then ran an install of Expo.
Whilst this install was happening, I created an Expo account. After
the install was complete, I ran npx expo login. Next, I ran npx create-
expo-app SUBlime. This command generated all my project
dependencies and files into one single folder – essentially it
completed the whole project setup process for me. With this setup
I then had to download the Expo Go app onto my phone. With the app installed I ran expo start which began
a development server. I could then select this development server on the expo app to open my app and test
it on my phone. Under the hood Expo is running a packager called Metro that bundles the app and then sends
it to my device to emulate on the Expo app.

PlayerTab Component
The first component I decided to develop was the PlayerTab component. The PlayerTab component would
make up the team management screen. A PlayerTab component would exist for each player and on this
PlayerTab a player’s data could be entered such as their name and positions. In comparison to what I had
planned in the future this component seemed relatively easy to make therefore I decided to develop it first
to allow me to hone my skills on an easier task. The design constraints of this component were that it had to
be easy for coaches to add players data. This is so setup time for a team is low, and users aren’t turned away
from the app by a high initial setup time.

Introduction to Basic React Native Paradigms
Before explaining my development of this component, it is
necessary to describe the key concepts of React and to the
extension of that React Native. The first main concept is JSX. In
simple terms JSX is the combination of HTML (markup) and
Javascript (Logic) into a single language. It was created on the belief
that rendering logic is inherently coupled with UI logic. JSX is used
to create components in React Native. Components are functions
that accept inputs (called ‘props’) and return React Native elements
that should be rendered to the screen. With this basic
understanding established when developing the PlayerTab
component I would need to have props for the player’s name and
the positions the player has assigned so it could be displayed on the PlayerTab.

4 https://docs.expo.dev/get-started/installation/

Project file generated from
running create-expo-app

Expo App on my phone. The
development server appeared after
running expo start. I could then tap on
the server to run my app.

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

function App() {
 return (
 <div>
 <Welcome name="Sara" />
 <Welcome name="Cahal" />
 <Welcome name="Edite" />
 </div>
);
}
Example of JSX and React Native Functional Component

https://docs.expo.dev/get-started/installation/

11

Development of the PlayerTab Component
When starting with the development of the Playertab component I first
created a JS file for the component, added the associated boilerplate
code to define the function and then added in a View component.5 React
Native has a large library of pre-made components available such as the
View component. Wherever a component existed for what I wanted to
achieve I opted to use the component to save time. The View component
is functionality identical to a HTML div tag and acts as a container for
content. To this View component I applied a style prop. The style prop
refers to a created Stylesheet6 and assigns associated styling to the
component. The styling I applied made each of the PlayerTab components span the width of the screen, have
a distinct background and nice rounded borders.

Next within this styled View component I started adding the
features of the PlayerTab. I first added a TextInput7 component.
This component was another prebuilt React Native component
and allows users to enter their name into a text field. I added a
prop on this TextInput component for placeholder text that made
it clear to the user that this is where they needed to tap to enter
their name. Next to this TextInput I added a RNPickerSelect8
component. This component took two required props the first
items which contains an array of objects. Each object has a label
and value field that determines what items are rendered in the
list. On this list I hardcoded an object for all selectable positions
the player can choose in a hockey match. The second component
was an onValueChange prop that calls a function when a new
value is selected from the list. I also added a range of others props
to it that handled the placeholder and styling of the component.

With the addition of the RNPickerSelect I was now faced with a new issue in the form of how to store positions
for each player. Initially I solved this by using Hooks, React Natives solution to managing state (I scrapped this
later, but I will use this as an opportunity to explain Hooks). Hooks are a type of function that lets you ‘hook
into’ React features. There is a multitude of Hooks available to hook into a range of features but in this case,
I made use of the useState hook that allows state to be added to components. useState hooks are defined in
the general form off const var_name = [<getter>, <setter>] = useState(<initialValue>). When called, the
useState function returns two functions the first a getter
which when called returns the value of the state and the
second a setter which when called updates the state. I set
up a hook state variable for playerPositions - which was an
array - then created a function called addPosition. This
function first checked if a player had a position and if not
added the position to the player. I attached this
addPosition function to the onValueChange prop of the
RNPickerSelect were I parsed the data of the selected
position. Also state hooks are immutable objects and
therefore a new list of positions must be created then
passed into the hooks setter function to not violate
immutability.

5 https://reactnative.dev/docs/view
6 https://reactnative.dev/docs/stylesheet
7 https://reactnative.dev/docs/textinput
8 https://github.com/lawnstarter/react-native-picker-select

//Container view tag for the playerTab
<View style = {styles.playerTab}>
//Defined styles very CSSesqe in styling
playerTab : {
 backgroundColor: 'white',
 width: '98%',
 height: 50,
 marginLeft: '1%',
 flexDirection: 'row',
 borderColor: 'black',
 justifyContent: 'center',
 alignItems: 'center',
 },
Example view tag and styling used on PlayerTab

//Implemented Text Input component
<TextInput
 style = {styles.playerTextInput}
 placeholder='Player Name'
 placeholderTextColor="grey"
/>
//Implemented RNPIckerSelect
<RNPickerSelect
 onValueChange={(value) => setSelectedPos(value)}
 placeholder={{ label: 'Add positions', value: null }}
 style = {pickerSelectStyles}
 items={[
 { label: 'Left Foward', value: 'LF'},
 { label: 'Center Foward', value: 'CF' },
 { label: 'Right Foward', value: 'RF' },
 { label: 'Center Midfield', value: 'CM'},
 { label: 'Left Half', value: 'LH' },
 { label: 'Right Half', value: 'RH'},
 { label: 'Left Back', value: 'LB' },
 { label: 'Right Back', value: 'RB'},
 { label: 'Goal Keeper', value: 'GK' },
]}
/>
Setup Textinput for player name and RNPickerSelect to choose a position

//Defined state variable hook
const [playerPositions, setPlayerPositions] = useState([]);

function addPosition(value)
{
 //Check if added position isn’t already in list
 if (!playerPositons.includes(value))
 {
 //Create new list with added items. New list must be created
in order to not violate immutability
 const newList = list.concat({ position: `${selectedPos}`});
 setPlayerPositions (newList);
 }
}
State hook is defined for players position as an array. Add position function adds a new
position if that position wasn’t already added

https://reactnative.dev/docs/view
https://reactnative.dev/docs/stylesheet
https://reactnative.dev/docs/textinput
https://github.com/lawnstarter/react-native-picker-select

12

With a way to add positions to the players I now had to display
these positions. For this I made use of the React Native Paper Chip9
component. A Chip is a pressable component that when pressed is
dismissed. I made these chips into a renderPositionChip
component which took a prop for the position name and then
rendered a Chip with that position name. With these Chips I had
to render one of them for each position. Therefore, I had to make
use of the Flatlist component10 to render multiple of the same
component. The mandatory props of a Flatlist are a data prop
which I parsed the playerPosition list into. The second prop is the
renderItem which I passed the renderPositionChip component.
The final prop is keyExtractor which gets the id for each rendered
item, for this prop I used a hacky solution to pass the id of each rendered item as their position in the list.
With this set up I now had the ability to add a name to the PlayerTab then assign positions to that player.

I next applied a series of refinements to this PlayerTab. The first was the ability to remove positions from the
player. To do this I added an onPress prop to the position chip that called a deletePosition function. When
called this function filters the deleted position out of list then updates the position state hook. Next, I added
a pressable to the PlayerTab to confirm whether the user wished to add a position to a player. Originally
when the user tapped a position for a player from the RNPickerSelect it would add the position instantly. This
would result in positions being accidentally added. To address this, I added a Pressable11 component to the
PlayerTab that the user would have to tap to confirm the addition of the positions. Within this Pressable
component I put an icon. To add an icon, I made use of the Vector Icon component12. This Vector Icon
component had access to a wide array of icon libraries such as FontAwesome. When I add an icon, I can
search these libraries13 then reference the icon I want
in the icon component, and it would appear. The
Pressable component called the addPosition function
I made earlier when pressed. However, the
addPosition function would not know what the
currently selected position was. To address this, I
created a state hook that stored the currently
selected position. This was updated when a position
was selected in RNPickerSelect then when the
addPosition function is called – on the press of the
plus icon - that position is added to the player. The
final change I made was styling touch ups to make the
PlayerTab look nicer.

9 https://callstack.github.io/react-native-paper/chip.html
10 https://reactnative.dev/docs/flatlist
11 https://reactnative.dev/docs/pressable
12 https://github.com/oblador/react-native-vector-icons
13 https://oblador.github.io/react-native-vector-icons/

First iteration of PlayerTab. Users can enter a name, then add a position. Added positions are then displayed as chips.

//Render a position chip for each position in the list
const renderPositionChips = ({ item }) => (
 <Chip
 style = {styles.positions}
 onPress = {() => {deletePosition(item)}}
 onClose = {() => {}} >{item.position}
 </Chip>
);

//Flatlist component that renders a position chip for
each item in the playerPostions list
<FlatList
 data={playerPositions}
 renderItem={renderPositionChips}
 horizontal
 keyExtractor={item => list.indexOf(item)}/>
Flatlist that renders a chip for each position.

//Pressable component with plus icon inside
<Pressable
 style = {styles.positions}
 onPress = {addPosition}>
 <Icon
 name='plus'
 size = {30}
 color = 'green'
 />
</Pressable>
//Delete position fuction
function deletePosition(chip) {
 //Make a new position list with out the removed chip
 const positionList = list.filter((item) => (item) !== chip);
 //Reset the list variable with a new value
 setPositionList(positionList);
}
Pressable that when pressed adds new position. Delete position function is called when a
chip is pressed to delete that chip

Refined and more stylized PlayerTab Component

https://callstack.github.io/react-native-paper/chip.html
https://reactnative.dev/docs/flatlist
https://reactnative.dev/docs/pressable
https://github.com/oblador/react-native-vector-icons
https://oblador.github.io/react-native-vector-icons/

13

PositionSlider Component
The second custom component I developed was the PositionSlider. This component was going to make up
the subsheet creation page, with a PositionSlider existing for each position. This component would allow a
user to assign a player gametime over a given time period. Drag functionality would then be available for the
user to allocate the player more or less gametime. This drag functionality had to be easy to use so subsheets
are quick and easy to setup. Creating this component was going to be
very difficult as I would have to build it entirely from the ground up as
no components, that achieved the same functionality already existed.
When designing this component, it went through multiple phases of
designs as I attempted a range of differing solutions all with varying
degrees of success.

First Iteration of the PositionSlider Component
The first solution I attempted was making use of Pressable components. I planned to render the Pressable
components in a Flatlist such that there was one Pressable component for every minute that could be
allocated. I planned for users to be able to drag over these Pressable’s to allocate more or less time to player.
However, this solution was short lived as I soon realised the Pressable component lacked key functionality
such as being able to detect whether a long press is occurring and whether a drag motion has been carried
out. This meant that the basic components provided by React Native would not provide me with an in-depth
enough gesture handling.

Second Iteration of the PositionSlider Component
As the provided React Native components were unable to handle raw gesture data the way I wished, I would
have to find a way to access users raw gesture data. After a bit of searching, I found a React Native Gesture
Handler library14. This library transforms native gesture data into interactable data. It provides a range of
components that you can use based on the type of gesture you wish to interpret. In the case of the
PositionSlider, I wanted to know the side to side drag of the user’s finger therefore I opted to make use of
the PanGestureHandler15. When setting this up in code I first had to wrap my component inside of a
GestureHandlerRootView. Inside of this I put a PanGestureHandler. The PanGestureHandler had props for
gestureStart, gestureActive and gestureEnd. In these props a function can be placed that would be called
when those events happen. Additionally the PanGestureHandler provides event data to these functions such
as finger x, finger y position of drag, initial x,y of drag that I could then use in my calculations. With this data
I could determine how far a player had been dragged and therefore how much time to assign them.

The second iteration made use of the React Native Gesture Handler Library. To begin with I created
positionData state hook that contained an object for each added player to that position. The object would
contain the player’s name, colour to display for player, start x position of player on the PositionSlider and
end x position of player on the PositionSlider. To this data I ran a formatting function that made it nicer to
display. This data was formatted under a process I called SNAP – FILL – CUT. Although this may sound like a
torture method it couldn’t be further from that (although adding this process may have tortured me
mentally). The first step of SNAP rounded all the start x and end x values such that they all started and ended
exactly at the edge of one of the minutes. The value I rounded to was, the multiples of was the expected
width of each minute tile that was determined based on the number of minutes in the interval and the width
of the screen. Next came FILL, in this step I filled in gaps in the PositionSlider. For example, there may only
be two players assigned for a single position meaning there may be unassigned minutes. The FILL step ensures
that these gaps are filled with an empty object. This was necessary due to me not using absolute styling. The
final step is CUT where unassigned time objects in the PositionSlider that span more than one minute are
broken into smaller unassigned time objects that only span one minute. This was done so that each
unassigned minute can have a RNPickerSelect on it allowing users to assign a player to that unassigned time.

The table below shows values going through the SNAP-FILL-CUT process. Note that in this case the screen
width is 500 and the interval is 5 minutes long. This means every minute has a width of 100.

14 https://docs.swmansion.com/react-native-gesture-handler/
15 https://docs.swmansion.com/react-native-gesture-handler/docs/gesture-handlers/api/pan-gh

Designed PositionSlider on Adobe XD

https://docs.swmansion.com/react-native-gesture-handler/
https://docs.swmansion.com/react-native-gesture-handler/docs/gesture-handlers/api/pan-gh

14

Step Applied Initial SNAP FILL CUT
Data values Tom, startx:100, endx: 160

Riley, startx: 380, endx:490
Tom, startx:100, endx: 200
Riley, startx: 400, endx:500

Unassigned, startx: 0, endx: 100
Tom, startx:100, endx: 200
Unassigned, startx: 200, endx: 400
Riley, startx: 400, endx:500

Unassigned, startx: 0, endx: 100
Tom, startx:100, endx: 200
Unassigned, startx: 200, endx: 300
Unassigned, startx: 300, endx: 400
Riley, startx: 400, endx:500

Comment These initial values don’t
precisely sit within a minute.
This could be from a drag
that recently finished which
changed these vales.

All the values are rounded to
the nearest 100

Two gaps occur and both of them
are filled with unassigned objects.
These unassigned objects can have
players added to them.

These unassigneds are then cut so
they take up one minute each

The next step was visualizing each object in the PositionSlider. When displaying the PositionSlider I opted to
make use of the .map() method to render a component for each object as opposed to a FlatList due to the
data being rendered not requiring lazy loading which is the main draw of Flatlist. For each rendered
component in the PositionSlider, I wrapped it in a PanGestureHandler to detect the drag starting and ending.
Next, I defined the width of each object as the difference between the end and start x then set that equal to
its width. I also assigned the colour of the view to be equal to the colour of the player. Finally, I used
conditional rendering that rendered based on whether the minute had a player allocated to it. If it did an
empty view would render if not a RNPickerSelect would render allowing a new player to be selected for that
place.

{/*Render each item in the positionData list by mapping it to a component. */}
{positionData.map((prop,index) => {
 return (
 //Panguesturehandler controls the drag functionality. Functions are called based on current drag event
 <PanGestureHandler key = {index}
 onGestureEvent = {(drag) => dragActive(drag,prop)}
 onActivated = {(drag) => dragStart(drag,prop)}
 onEnded = {(drag) => dragEnd(drag,prop)}>
 {/*Set the width, color and name of the item based on what the object is at that point in the list.*/}
 <View style={{...styles.tagSection , backgroundColor:prop.color, width: (prop.end-prop.start)} }}>
 {/*If object is empty render RNPickerSelect to allow user to add player at that minute. If not empty render the
players name at that position*/}
 {(prop.name != 'Empty') ?
 <Text numberOfLines={1} style = {{...styles.tagSectionText} }>{prop.name}</Text>:
 <RNPickerSelect
 onValueChange={(value) => {addNewPlayer}}
 placeholder={{ label: '+', value: null }}
 style = {pickerSelectStyles}
 items={[{ label: 'Alex Ying', value: 'Alex ying'},
 { label: 'Jerry Chang', value: 'Jerry Chang' },
 { label: 'Callum Lockhart', value: 'callum lockhart' }]/>
 </View>
 </PanGestureHandler>
)}

Following this I had to deal with the users drag input and adjust the minutes allocated based on that. As
shown above the PanGestureHandler has props that refer to a function when a certain event occurs. The first
of these events called is onActivated or when the drag begins. When the drag begins, we want to determine
the direction of the drag. This is because one end of the dragged player object must remain fixed during the
drag and that end would be opposite to the drag’s direction. To determine the drag direction, I compared
the x position of the drag start with the midpoint of the player object. If the x position was greater than
halfway of the players width the user was dragging to the right if its less, they are dragging to the left.

The next event called is onGestureEvent which is called at every render cycle when the user is dragging. As
the user moves their finger the width of the players object must change to reflect this drag. The way this is
updated is dependent on the direction of the drag because if the player is moving their finger right you want
to increase the size of the players objects and reduce the size of the player or unassigned time object to the
right. Likewise, if you drag to the left you want to decrease the size of the player or unassigned time object
to the left. With the dragged player bar now moving two cases of movement must be considered.
//If drag direction is to the right decreasing size of object to right
updatePlayerData[prop.index].end = drag.nativeEvent.absoluteX-sliderBarMargin
updatePlayerData[prop.index+1+amountDeleted].start = (drag.nativeEvent.absoluteX-sliderBarMargin)

//If drag direction is to the left decreasing size of object to left
updatePlayerData[prop.index].end = drag.nativeEvent.absoluteX-sliderBarMargin
updatePlayerData[prop.index-1-amountDeleted].start = (drag.nativeEvent.absoluteX-sliderBarMargin)

Firstly, the player increases the size of the player object and overlaps an adjacent object. When this occurs
the adjacent object no longer renders as it has a width value of 0. Although it is no longer rendered it still
exists in our positionData list. This is an issue as the adjacent object no longer has an index difference of 1

15

instead it has an index difference of 2 as the previously adjacent object is now covered up. However, our
code doesn’t know this meaning that it doesn’t decrease the size of the next object after the overlapped one.
The obvious solution to this would be to delete the overlapped object from the positionData list however
this causes issues when deleting an object to the left of the selected one as it causes the index of the current
object to decrease cancelling the drag as the .map() method to render the objects becomes confused.
Therefore, an index offset must be applied based on how many objects are overlapped. This offset is added
to the code the reduces the width of the adjacent object.

//As we cant delete the covered object as it would cause an indexing error we must instead ‘skip’ over it by increasing the
amountDeleted index that we then add to all the code. If the end of an object is before its
if ((updatePlayerData[prop.index+1+amountDeleted].end - updatePlayerData[prop.index+1+amountDeleted].start) <= 0)
{
 setAmountDeleted(amountDeleted+1)
}

The second case is when the player decreases the size of their object. As they decrease the size of their player
object a new object must be created in that area. If the area isn’t filled all content progressively moves
towards the direction of the drag due to absolute styling not being used. To counteract this a state hook is
created that keeps track of the original position of the end of the dragged player object. This value is taken
in the dragStart event. If the drag position is behind the stored value in the state hook a new unassigned
object is created to fill this ‘deleted’ space from the dragged object. In addition to this the index offset must
be decreased by one to account for the addition of a new object to the list.

if (drag.nativeEvent.absoluteX-sliderBarMargin <= enterPos)
{
 //Splicing a list creates a new version of that list with an item inserted at a given index. As a new version of the list
is created immutability isn’t violated.
 updatePlayerData.splice(prop.index+1+amountDeleted,0,{
 name: 'Empty',
 color: 'white',
 index: 0,
 start: drag.nativeEvent.absoluteX-sliderBarMargin,
 end: enterPos
 })
 //We dont want this code to fire again therefore we set the enter pos to 0 which is the
 //bottom boundry of the PositionSlider and therefore will never be dragged across
 setEnterPos(0)
 //Indexing is adjusted by -1
 setAmountDeleted(amountDeleted-1)
}

Finally at the end of the drag the data formatting function is called that formats the data through the SNAP
– FILL – CUT process. This is done so that all the objects are formatted and displayed correctly.

Linking the PlayerTab and PositionSlider Components
With a basic implementation of both the PlayerTab and PositionSlider components my next goal was to link
them up to allow created players to be added to the PositionSlider and then assigned gametime. The
implementation of this was complex as I had to setup navigation between pages and then find a way to pass
data between these pages.

I managed to lose all the screen shots of this PositionSlider iteration as a I deleted them when I moved onto the next iteration of the
PositionSlider. I only had left a video of me dragging a player object, so this screenshot is from that video. If a user pressed a plus
they would be able to add a new player there. Also note visual glitches of the + not being correctly aligned. I talk more on this later.

16

Navigation Between Pages
The first problem I tackled was adding navigation
between pages. For this I made use of the React
Navigation library16. The React Navigation library
supports a wide range of Navigation paradigms such
as stack navigation (how navigation works on
webpages), tab navigation (navigation buttons at
bottom) and drawer navigator (navigation buttons
that can be pulled out at the side). Out of these three
options I decided to use stack navigation as it was the
simplest to use. Should I need to make use of another
navigation paradigm I could set that up in the future
when I had improved my skillset with this library. Setting up the stack navigator requires adding a lot of boiler
plate code within the App.js file which is the index page of the app. All pages within the stack navigator must
be defined within this App.js file.

With this boilerplate setup the next step was implementing the
code that allowed the navigation between pges. To do this I setup a
Pressable that had an onPress prop. When this onPress prop was
called a navigation function was run that had the name of the page
– as defined on the index page - to move too. Above is the setup
pressable to move between the team management and
PositionSlider page.

Scaling up the PlayerTab Component to make the Team Management Page
With the ability to move users between pages the next step was to
allow data to move between pages. However before doing this, I
needed to have meaningful data to move between the pages. I had
yet to scale up the PlayerTab system to allow multiple players to
be created. Therefore, I had to scale up this system to allow
multiple players data to be passed to the next page. To do this I
created a playersData state hook that was an array that contained
all the player objects. Next, I made a createPlayer function that
added a new empty player object to the playersData array. After
implementing this I realised that all player objects must have a
unique id. To address this, I created a playerId state variable that
incremented by one for every player created. This meant that all players had a unique id. The final step was
to render this all the players. To do this I made use of a Flatlist where the render item was the PlayerTab and
the data used was the playersData.

You may also note that in the above screenshot there is a trash icon for every player. This trash icon is
universally recognized in UI/UX as a symbol for deleting something. In this case when its pressed it will delete
the player. When setting up a deletion system I created a Pressable with the trash icon inside of it. I then set
the Pressable onPress prop equal to the deletePlayer function. Inside this function is an alert component17.
An alert is a dismissible static pop up. They are generally used as warnings or to provide app users with
information. In this case the alert appears as a confirmation – confirming whether the user wishes to delete
this player. If the user does select the option to delete the player another function is run to remove the player
from the playersData array. The alert was deliberately used to prevent users from accidentally deleting
players that they spent time setting up. With the scale up of the PlayerTab now complete I have achieved a
complete team management page. Any further reference to this page and its component in the report will
be under the name of the team management page.

16 https://reactnavigation.org/docs/navigating
17 https://reactnative.dev/docs/alert

//Creates the native stack navigator object. This gives the navigation a
native feel
const Stack = createNativeStackNavigator()

const App = () => {
 return(
 // Container that all navigators must be defined within
 <NavigationContainer>
 {/* Within the stack navigator all screens in the Stack must be
defined. This is done by refrencing their component */}
 <Stack.Navigator>
 <Stack.Screen name= 'TeamManagment' component={TeamManagment}/>
 <Stack.Screen name= SubsheetCreation’component={SubsheetCreation}/>
 </Stack.Navigator>
 </NavigationContainer>
)
}
Stack Navigator setup with a screen defined for every page that is navigated to

<Pressable
 style = {styles.nextPage}
 onPress =
{()=>navigation.navigate(‘SubsheetCreation’)}>
 <Icon
 name='check'
 size = {30}
 color = 'green'/>
</Pressable>
Use of Pressable to call the navigate function to move the user
between team management and the subsheet overview page

Scaled up player team management page. Displayed are multiple empty
Player Tab components. The plus in the top left would create more.

https://reactnavigation.org/docs/navigating
https://reactnative.dev/docs/alert

17

Data Management Between Pages
Now I was able to begin passing the data between pages. First, I looked at using React Navigations route
parameters18. Route parameters allows variables to be passed in the navigation method and then accessed
on the following page. It is very similar to the $_GET method in PHP. Although this solution appealed due its
simplicity it was not a scalable solution. This is because later in development there may be 10+ unique
variables that need to be passed between each page and this data must be passed to multiple pages. This
becomes worse when multiple components are updating the state at the same time. This would cause a
massive headache and therefore I opted out of this system. What I was looking for was a data management
system that stored data globally in a scope that encompasses all pages so data can be passed downward to
both pages as opposed to being passed between the pages. This would also allow any component in the
project to update and access state which wouldn’t be previously possible. Based on this I decided to make
use of Redux19 which is a global state container.

Redux Explained
The Redux data management paradigm is initially quite complex to wrap your head around, but I will do my
best to provide a succinct explanation. The first concept to understand is Actions. Actions are an event that
describes something that happened in the application. Actions have two fields. The first is type which
contains a descriptive name of what the action does. The second field is payload which can be used to pass
additional information when an action is called such as the value of a variable. Actions must contain the
dispatch method in order for it to reach a reducer when called.

//Action being defined in the action.js file. As you can see the action is defined as an object that contains a descriptive
title of what the action does and has a payload that allows the newly created player data to be passed through
export const CREATE_PLAYER = 'CREATE_PLAYER';

export const create_player = new_player_data => dispatch => {
 dispatch({
 type: CREATE_PLAYER,
 payload: new_player_data,
 });
};

//Dispatch method being defined in the team creation page and wrapped around the create player action.
const dispatch = useDispatch()
const createPlayer = player_data => dispatch(create_player(player_data))

//Create player being called inside a player creation fuction. As you can see an empty player object is being passed as the
payload for this aciton
createPlayer({
 id: newPlayerId,
 name: '',
 positions: [],
})

The second concept is Reducers. Reducers are functions that receive the current state of an application
alongside an action. The reducers then use the action to decide how the state of the application should be
updated. Reducers are like the JS concept of event listeners. Additionally, a few rules must always be applied
to Reducers. These being they must not modify the existing state and instead must use an immutable update.

18 https://reactnavigation.org/docs/params
19 https://redux.js.org/

const deletePlayer = (playerId) => {
 //Create alert to show to player
 Alert.alert(
 "Do you wish to delete this player?",
 '',
 //Selectable options are defined as a list of objects
 [{text: "Cancel", style: "cancel"},
 {text: "Confirm",onPress: () => removePlayer(playerId)}])
}
Delete player function. Options for users are defined as objects in list.

Pop up alert that confirms whether the user wishes to delete the
player

https://reactnavigation.org/docs/params
https://redux.js.org/

18

//Player reducer function inside the reducer.js file.
function playerReducer(state = initalState, action)
{
 //The reducer first takes the passed action type to determine what update to the state is being called
 switch (action.type)
 {
 //As you can see when the all updates are done immutability and action.payload is reference when making updates
 case CREATE_PLAYER:
 return {...state,player_data: [...state.player_data, action.payload]};
 case REMOVE_PLAYER:
 return {...state,player_data: state.player_data.filter(item => item.id !== action.payload)};
 default:
 return state;
 }}

The third concept is Stores. The state of a redux application lives in an object called a store. The store is
created by passing in a reducer. The state of the store can be accessed through out the application by using
selectors which allow a specific part of the state to be referenced.

//Creation of the store in store.js
//As the project progress I will create more reducers therefore I implemented the combinereducer for future proofing
const rootReducer = combineReducers({
 playerReducer,
});
export const store = createStore(rootReducer);

//Accessing of the player data within the PositionSlider component
const playersData = useSelector(state => state.playerReducer);

To the right is a useful diagram that explains the relationship
between these concepts and how data is passed around the
app. As you can see from just the code above only having a
CREATE_PLAYER action requires a lot of boiler plate. Therefore,
later in development when I could have upwards of 50 actions
the codebase could get very bloated. To combat this, I setup
three js files for each of the concepts, these being actions.js,
reducers.js and store.js. I exclusively put the associated
concepts on these pages. Initially I setup global redux stores for
player_data and wrote reducers to add new players and change
the data of players.

Third Iteration of the PositionSlider Component
With the player data now being accessible on the PositionSlider page I could now add the ability for created
players to be assigned time on the PositionSlider. Before that I would first need to scale up the PositionSliders
such that there was one for each position on the field. When I went to complete this scale up, I faced
performance issues. This was because of design issues with the PositionSlider alongside this the PositionSlider
had two other issues resulting in me having three main issues with the current implementation of it.

1. Poor performance. This was because the function that was called whilst the drag is active had a large
amount of logic in it. Every render cycle that the drag was happening this logic ran, tanking the
performance of the PositionSlider. This caused the drag to appear ‘laggy’ as the user’s input was only
rendered a few seconds after their motion.

2. Glitches related to the indexing of list. As I constantly deleted and added new objects to the list during
a drag if an object had been overlapped or pulled back on. This resulted in bugs related to indexing
as the items in the list invariably changed.

3. Visual glitches / bugs from rounding code. When new objects are created their width is found by
dividing the screen width by the amount of minutes in an interval. Rounding is applied to this
resulting in inconsistent values being obtained. This causes visual glitches as rendered players shift
in width dependent on how they round. This cased a minor ‘glitchy’ effect.

Based on these issues for the project to continue with a decent degree of success I would need to redesign
the PositionSlider component. This would be the third iteration of the component and therefore I could not
stuff it up again if I wished to finish the project before the end of the winter sports season. Therefore, I spent
a large portion of time planning out this new iteration. The first step I took in planning was looking at the
problems of the old component and determining how I would them in the next iteration. The first issue with

Redux Lifecycle

19

lag caused by logic being run every render cycle could be addressed by limiting the amount of logic being run
when a drag was occurring. The indexing related issues could be fixed by having the data structure storing
the information of fixed length with no objects added or deleted from this list. The rounding related issues
could be fixed by applying consistent rounding such as flooring as opposed to using the randomness of
rounding.

By the end of the design process, I decided to use a multi-layered component with three separate layers. The
bottom layer would be a component layer that contains the RNPickerSelects for each minute allowing players
to be assigned. The second layer would be a visual layer that displays the data for what player is playing when
by having a player blob that would cover up the minutes that player has been assigned. The final layer would
be the drag layer that handles the drag. I would render these layers on top of each other by styling them
absolutely.

The Component Layer of the PostionSlider
I first started by setting up the component layer. First, I setup a new global state variable within the Redux
store. This state was for position_data. I defined position_data as having two fields. The first field was for the
position name, in this case it was ‘CF’ and then the position_timeline. The position_timeline is a list that is
the length of a game’s interval (in this case its hardcoded at 15 for hockey). The index of the list corresponds
to the minute of play and the value at that index is an object that determines who is playing in that minute
and what colour to display them as. The position_timeline is also of fixed length meaning it will not encounter
indexing issues like the previous iteration.

//Added a new field to the state
const initalState = {
 player_data: [],
 position_data: [{position_name: 'CF', position_timeline: new Array(15).fill({name:null, color:null})}]
}

With that setup I next rendered the component
layer. For each value of position_timeline I
rendered a View component. Each view
component was styled with a flex value of 1
meaning that each of them took up equal space.
I then applied conditional rendering to
determine whether the RNPickerSelect
component should be rendered. I checked if that
value of the position_timeline was null and if so,
no player was allocated that minute and
therefore the RNPickerSelect should be
rendered. I got the selectable values for the
RNPickerSelect by mapping the player_data
which I retrieved from the redux store into the format of label and value for the RNPickerSelect. This would
allow users to allocate any of their created players that had that position the unassigned minute. I also set
the placeholder values of the RNPickerSelect to equal the one above its index value, so it represents its
minute of play.

The final step was adding the code for when a player was selected. For this I wrote a reducer for updating
this position that took the selected players name, position minute and position name. I added this reducer
to the onValueChange of the RNPickerSelect such that when a player is selected at a minute the position data
is updated to reflect this change.
//Update position reducer that highlights the pain of immutable updating. First it finds the corresponding position. Then it finds the
corresponding minute of play. Finally it updates the name at that value to reflect the selected player.
case UPDATE_POSITION:
 return{...state, position_data: state.position_data.map(
 (content, i) => content.position_name === action.payload[2] ?
 {...content,
 position_timeline: state.position_data[i].position_timeline.map((content,i)=> i===action.payload[0] ?
 {...content, name: action.payload[1], color: 'red'} : content)}
 : content)}

//Creation of pickerSelectData by mapping the player data in the form of
selectable pickerselect options
const pickerSelectData = globalState.player_data.map(item => ({label:
item.name,value:item.name}))

//Rendering of the component layer
globalState.position_data[0].position_timeline.map((prop,index) => {
 return(
 <View key = {index} style = {{flex:1,borderColor:'black'}}>
 {
 (prop.name == null) ?
 <View style = {{alignItems:'center',justifyContent:'center'}}>
 <RNPickerSelect
 onValueChange={(value)=>{updatePosition([index,value,'CF'])}}
 placeholder={{ label: (index+1).toString(), value: null }}
 style = {pickerSelectStyles}
 items={pickerSelectData}
 /></View> : <View/>
 }
 </View>
)
}

20

The component layer was now setup and users could select a player to add at a certain minute. The next step
was reflecting this change visually by making the players name appear over the minutes they had been
assigned. My initial solution to this was using the conditional rendering of the component layer. Should the
RNPickerSelect not render because the minute had been assigned, I instead rendered a view component that
had the player’s name inside of it. This worked but it was ugly because if a player had been assigned 10
minutes their name appeared 10 times for each minute. It would have been a lot visually nicer if their name
only appeared once and was centred in the middle of their 10 assigned minutes.

The Visual Layer of the PositionSlider
To implement this, I created a visual layer. The
view container of the visual layer was styled
with absolute positioning meaning that it
rendered on top of the component layer. In the
visual layer I wanted to carry out a process I
referred to as ‘blobbing’. In blobbing, single
minutes players play in a row are blobbed into a
single view, as opposed to existing as single one-
minute views. This allows the players name to
only appear once for the blob and be centred at
the middle of the blob. This would cause a
player playing from minutes 5-10 to have one single view that spanned five minutes as opposed to five
separate views that spanned one minute. The implementation of this blobbing function is shown in the logic
tree above.

const blob_data_for_visual_display = () =>
{
 //Initalize an empty array that the blobbed data will be put into
 let blobbed_data = []
 let blob_length = 0;
 let interval_length = globalState.position_data[0].position_timeline.length
 //loop through whole list
 for(let i = 0; i < interval_length; i++)
 {
 //Incerement blob length
 blob_length += 1
 //Check if the current minute is not assigned to a player
 let isMinEmpty = globalState.position_data[0].position_timeline[i].name == null;
 //Check if the minute to the right of the current minute has the same player assigned.
 let isNextMinSame = globalState.position_data[0].position_timeline[i].name ==
globalState.position_data[0].position_timeline[i+1].name;
 //Blob has ended if next minute doesn’t have same player in it or next minute is unassgined
 if (isMinEmpty || (!isNextMinSame && !isMinEmpty) || i == interval_length-1)
 {
 //Add the blob to the blobbed data and reset the length of the blob
 blobbed_data.push({name: globalState.position_data[0].position_timeline[i].name, length: blob_length,color:
globalState.position_data[0].position_timeline[i].color})
 blob_length = 0
 }
 }
 return blobbed _data
}

With the blobbing function able to return blobbed data I now I had to map this data to be rendered. These
rendered components are stylized view components with their width equal to their length value times the
minute width constant that I calculated by getting the PositionSlider width and dividing it by the number of
minutes displayed. I also set the colour of the view to transparent if no player was selected at this minute to
prevent the RNPickerSelect being covered up.

Implemented component layer. This shows the described issue of the same player appearing for each minute as opposed to appearing once.

21

<View style = {{position:'absolute',flexDirection:'row'}}>
 {blob_data_for_visual_display().map((prop,index) => {
 return(
 <View key = {index} style = {{...styles.sliderBox, width: interval_width*prop.length, backgroundColor:(prop.name ==
null? 'transparent':prop.color)}}>
 <Text style = {styles.sliderText}>{prop.name}</Text>
 </View>
)})}
</View>

The Drag Layer of the PostionSlider
The final layer to add was the drag layer. Currently minutes could only be assigned through selecting players
on the RNPickerSelect and not by dragging. With the drag layer I had to keep all logic when the drag was
active to a minimum to overcome the lag related issues of the last iteration. Therefore, I decided to make
the drag layer purely visual in the sense that it existed as an overlay to show the user where they had dragged,
and only after the drag had finished would I carry out the logic of updating the minutes assigned. The first
step in doing this was setting up the visual part of the drag layer. First, I setup a dragBar state variable that
was a list of three objects. All objects had a start and end field representing the x coordinates of the position
of the bar. This dragBar variable was defined in dragStart, updated in dragActive and set to null in dragEnd.
When rendering this dragBar I first used conditional rendering to render only when the dragBar is active. I
then rendered three views with the middle representing the current drag happening. Also note that in the
styling of the middle view that represented the drag the background colour was the same as that of the
player blob, but it had a reduced opacity to give it an overlay feel.

{/* Checks if drag bar is active and if so draw three views one for the dragbar and the other two for either side */}
{(dragBar != null)?
 <View style = {{position:'absolute',flexDirection:'row'}}>
 <View style = {{ width: (dragBar[0].end-dragBar[0].start),opacity:0,height:100}}/>
 <View style = {{...styles.dragBar,backgroundColor: globalState.position_data[0].position_timeline[startMinute].color,
width: dragBar[1].end-dragBar[1].start}}/>
 <View style = {{width: dragBar[2].end-dragBar[2].start,height:100}}/>
 </View>: null}

With the frontend setup I then dealt with the back-end implementation. First with the dragStart function.
Like the previous iteration of the PositionSlider for the drag to work we need to know what direction the drag
is going. The difference is that in the previous iteration we knew the length of the player objects, and it was,
therefore, easy to determine the halfway point of the object. However, in this iteration we don’t know the
length of each player object as they exist across multiple minutes. Therefore, we must find how many
minutes that player spanned then find the middle of those minutes. We could then find the x coordinate of
this minute and determine whether the drag started on the right or the left of that value. The start minute
of the drag is also stored on the dragStart function so the visual overlay of the drag can be set to the colour
of that minute.

Next on the dragActive. I fully cut back on the logic in this in comparison to the previous iteration. The only
code was updating the dragBar variable so that the drag bar reflects the movement of the user’s finger.

const dragActive = (drag) =>
 {
 //Move direction is to the right so right end moves while left end is fixed
 if (moveDir == 'right')
 {
 setDragBar([{start: 0, end: dragBar[0].end},
 {start: dragBar[1].start, end: drag.nativeEvent.x},
 {start: drag.nativeEvent.x, end:screen_width}])
 }
 //Move direction is to the left so left end moves while right end is fixed
 else if (moveDir == 'left')
 {
 setDragBar([{start: 0, end: drag.nativeEvent.x},
 {start: drag.nativeEvent.x, end: dragBar[1].end},
 {start: dragBar[2].start , end:screen_width}])
 }
 }

Updated visual layer after carrying out the blobbing process.

22

Finally, on dragEnd. It was only when the drag is
completed that I updated the position_timeline to
reflect the changes in times allocated to a player.
First, I found the index of the minute the drag
ended on by rounding the user’s finger to the
nearest minute. Next, I had to consider the
direction of the drag this was because if I dragged
to the right, I would iterate through the list
forwards from the start minute to the end minute
changing values but if I dragged to the left, I’d
want to iterate from the end minute to the start
minute to update values. Within the directions I
also considered the cases of whether the drag
overlaps adjacent minutes – in which it changes
the value of these minutes to the same as its own
– or if the drag pulled back – in which I would set
the minutes pulled back to null to be empty.

Final Visual Touch-Ups to Position Slider
The PositionSlider was now functionally complete, and I could add as many players as I wished and drag them
forwards and backwards to give them more time. It was at this point I made a stylistic change to allow users
to differentiate between players. As you can see in all code excerpts the colour of Views are set by the value
of the colour field of the object at the given minute in the position_timeline. I initially always set this colour
field to be red, but I recognized as time progressed the need for each player on the PositionSlider to have a
unique colour. To implement this, I made use of a script to generate a random hex value then assigned it as
the player’s object colour. I then wrote a function that retrieved the colour of a player given its name. This
assignColor function was then called every time a player was added to the position_timeline to set the colour
field of that minute to be the same as their colour. Note I did realize that I shouldn’t be joining on a name
and instead should join on a common key and will discuss fixing this later.

const assignColor = (name) =>
 {
 //Null check prevents unassigned time from being given a color
 if (name != null)
 {
 //Join on the name of the two lists and return the color
 let join = globalState.player_data.find(player => player.name == name)
 return join.color
 }
 }

The Jeff player is currently being dragged. The area dragged over appears transparent to signal to the user that this area has been dragged over. It is only
when the player ends the drag that Jeff would be assigned the gametime.

For this position George, Bob and Kyle have been assigned gametime. Their randomly generated colour allows us to distinguish between them

//This code is only for if the moveDir was to the right. There is
similar code for moving to the left

const endMinute = Math.round(drag.nativeEvent.x / interval_width)

if (moveDir == 'right')
{
 if(endMinute <= startMinute)
 {
 for (let min = endMinute; min <= startMinute; min ++)
 {
 updatePosition([min,null,'CF'])
 }
 }
 else
 {
 for (let min = startMinute; min < endMinute; min ++)
 {
 updatePosition([min,globalState.position_data[0].posi
tion_timeline[startMinute].name,'CF',globalState.position_data[0]
.position_timeline[startMinute].color])
 }
 }
}

23

Development of Formation Selection Screen
Different coaches make use of different strategies in a sports match. What underpins these strategies is the
formation of players on the pitch. To cater to these different coaching styles, it is necessary to implement a
way for users to have choice in which formation they use. My solution to this is to implement a formation
selection screen where users can choose from a range of predefined formations. By implementing this I
would increase the accessibility and use of the app as coaches should be able to find a formation that caters
to their coaching style. Additionally, on the subsheet creation screen all the available positions that appeared
were arbitrary. By allowing users to select a formation the positions of that formation can then appear on
the subsheet allowing users to assign time to a player at a certain position. The implementation of a
formation selection screen had two steps. Firstly, the visual implementation followed by the back-end
implementation.

Creating a Visual Game Pitch
First, I wanted to create a visual representation of a hockey pitch that would be the background for the
formations. To do this I made use of View components with flex styling to create an image of a hockey pitch.
I used this method as opposed to a static image because flex styling allows the hockey pitch to resize to a
range of screen sizes and still resemble a hockey pitch. I also set the position of it to be absolute to allow the
positions to be overlayed on top.

{/* INLINE STYLING IS DELIBERATE TO SHOW HOW FLEX STYLING WORKS */}
<View style = {styles.gamePitch}>
 {/* Top quarter */}
 <View style = {{flex: 1,flexDirection:'row', backgroundColor:
'green',borderBottomWidth:2,borderColor:'white'}}>
 <View style = {{flex:1, backgroundColor:'green'}}></View>
 <View style = {{flex:4}}>
 <View style =
{{flex:17,borderRightWidth:2,borderLeftWidth:2,borderBottomWidth:2,border
Color:'white', borderBottomEndRadius:150,borderBottomStartRadius:150}}/>
 <View style ={{flex:3}}/>
 </View>
 <View style = {{flex:1, backgroundColor:'green'}}></View>
 </View>
 {/* Middle half of field */}
 <View style = {{flex: 1, backgroundColor:
'green',borderBottomWidth:2,borderColor:'white'}}/>
 <View style = {{flex: 1, backgroundColor:
'green',borderBottomWidth:2,borderColor:'white'}}/>
 {/* Bottom quarter */}
 <View style = {{flex: 1, backgroundColor:
'green',flexDirection:'row'}}>
 <View style = {{flex:1, backgroundColor:'green'}}/>
 <View style = {{flex:4}}>
 <View style = {{flex:3}}/>
 <View style =
{{flex:17,borderRightWidth:2,borderLeftWidth:2,borderTopWidth:2,borderCol
or:'white', borderTopLeftRadius:150,borderTopRightRadius:150}}/>
 </View>
 <View style = {{flex:1, backgroundColor:'green'}}/>
 </View>
</View>

Implementation of Positional Grid System
With a pitch rendering we know wanted to render the positions on top of it. What
I wanted was to have a circular icon for each position. These icons would have the
initials of the position and be placed in the position of that position on the hockey
field. For example, a circular icon with ‘GK’ on it is by the goal. This could be done
by using absolute styling to set each of the position icons at a fixed x and y value,
however this would not effectively scale to different screen sizes. Therefore, I
decided to make use of a responsive grid formation. I defined the hockey pitch as a
7x7 grid which I represented with a 2d array. I then set the array value where a position was to the position
initials and all other values to 0 to represent it being empty.

The next step was rendering this grid as icons. To do this I used a double map method. Firstly, I mapped the
grid so that I had access to each row of data. I then mapped each of these rows of data to View component,
causing a View to be rendered for every item in the 2d array. I then used conditional styling to make values
of 0 in the array not appear by setting their opacity to 0. For values that contained a position I applied styling

[[0,0,0,'CF',0,0,0],
[0,0,'LF',0,'RF',0,0],
[0,'RI',0,0,0,'LI',0],
[0,0,0,'CH',0,0,0],
['LH',0,0,0,0,0,'RH'],
[0,0,'CB',0,'CB',0,0],
[0,0,0,'GK',0,0,0]]
Array for 3-2-3-2 formation

Rendered game pitch from code to the left

24

to its View component to make it appear as a circular icon. Additionally, all the View components –
irrespective of being transparent or not - had a flex value of 1. This made all the icons the same size.

{layoutData.map((prop,index) => {
 return(
 // Row data is remapped
 <View key = {index} style = {{flex: 1,flexDirection:'row'}}>
 {prop.map((prop,index) => {
 //All view component need to be rendered due to how the positioning of them is dependent on flex styling.
However we don’t want all icons to appear so a transparency is applied if they should not appear
 let opacity_ = 1
 if (prop == 0) opacity_ = 0
 return(
 <View key = {index} style ={{...styles.iconBodyStyle, opacity: opacity_}}>
 <Text style = {styles.iconText}>{prop != 0 ? prop[1]:''}</Text>
 </View>
)
 })}
 </View>
)
})}

I next needed to scale this up to allow for the rendering of multiple formations at once to allow the users to
select a formation. To do this I setup a list for all possible formations. I then made formation objects for each
formation with fields of formation name, formation layout (that being the 2d array) and formation id. With
this setup I then used a Flatlist to render the whole list of formations. I consulted with my Dad (he used to
select the Black Sticks so he probably knows a thing or two about hockey) about basic hockey formations and
he gave me a range formation to add such as 3-2-1-2, 3-4-3, 1-2-4-3 and 4-4-2.

With all the formations displayed I now needed to add the ability for users to select a formation. To
implement this, I created a state hook that stored the id of the currently selected formation. I then wrapped
all the formation components inside of a Pressable. When a Pressable was tapped I updated the state hook
to be equal to the id of the tapped formation. I then used conditional styling to make the formation that had
an id the same as the selected one appear with a blue background, indicating has been selected.

Connecting Formation Selection Page with the Rest of the App
The final task was to connect the formation selection page up with the rest of the app. I started by adding it
to the stack navigator and set it as the default page as I wanted users to first select a formation before adding
positions to their players. I then added a Pressable to the formation selection page that signified the
completion of a selection. When this Pressable was pressed multiple things happened. Firstly, I transformed
the data from the formation into data to appear as PositionSliders on the subsheet creation page. To do this
I iterated through the formation data and created an object for each of the positions in the formation. All
these position objects were added to a list. I then made a reducer to update the position_data to be the same
as this list. Finally, I called a navigation event to move the user to the team managment page. With this
implemented, when a user gets to the subsheet creation there is a PositionSlider for each of the positions in
the formation they selected. I also rendered the initials of each position next to their respective PositionSlider
to clearly indicate to users which position was which on the subsheet. With this complete, the subsheet

Formation that is rendered from passing in
the array above

What happens to formation if
unrendered positions don’t have
a flex value of 1.

Scaled up formation selection. The currently selected
formation is highlighted in blue

25

creation page was now finished. Additionally, I also implemented an alert that would prevent the users from
progressing if no formation was selected.

///positionData is the formatted data. Formation data is the 2d array for the
currently selected formation
let positionData = []
let formationData = formationDataAll[selectedFormation].formation_data
let index = 0;
//Iterate through all values of the 2d formationData
for(let rows = 0; rows < formationData.length; rows++)
{
 for(let columns = 0; columns < formationData[rows].length; columns++)
 {
 //Check if a position exists at that place
 if(formationData[rows][columns] != 0)
 {
 //Create a new position object for that position
 positionData.push({
 position_id: index,
 position_inititals: formationData[rows][columns][1],
 position_timeline: new Array(15).fill({name:null, color:null})
 })
 //Increment the index to ensure all positons have unique id
 index += 1
 }
 }
}
//Reducer that is called to update redux store of positonData
updatePositionData(positionData)

The final change I made was to the team management page. I no longer needed to arbitrarily set the
selectable positions that could be added to a player. I could instead iterate through the position_data list
adding a selectable position for each of the positions in the selected formation.

let positionSelectionData = []
//Iterate through the position_data
for(let i = 0; i < position_data.length; i++)
{
 //Format the data in the accepted form of the RNPickerSelect
 let formattedData = {label: position_data[i].position_name, value: position_data[i].position_inititals}
 //Check if the position is not already in the list as some formations have for example two CB
 if(!positionSelectionData.some(formattedData => formattedData.label == position_data[i].position_name))
 {
 positionSelectionData.push(formattedData)
 }
}

Development of the Game Overview Screen
The game overview screen was the final major part of the planned MVP I agreed upon with A K . On
this page it would show upcoming subs and the active game situation. By players being able to view the
upcoming subs during the match and when they occur they are able to carry out their substitutions without
the help of a coach. This allows young players to develop self-management skills and the quality of coaching
to increase as the coach no longer needs to micromanage subs.

Implementing a Game Clock
The functionality of being able to see upcoming substitutions and the active game situation is reliant on
knowing the current time on the games clock. No clock existed therefore I had to create my own. The first
step of creating the game clock was creating state hooks for current minute, current second and whether the
game was paused (I added a pressable to toggle the pause variable). Next, I began researching how to setup
a clock system. What I found was that it was quite easy to cause a memory leak by causing an infinite render
cycle therefore I had to be quite careful in how I approached this. What I decided to use was setInterval.
setInterval takes two arguments, the first a function that you want to run every interval and the second the
interval length in ms. I next put in a clearInterval function that was necessary to clear the interval every
render cycle to prevent a memory leak happening. However, when I went to run this code a memory leak
occurred, and the timer increased at an inconsistent rate. This initially perplexed me, but I soon realised that
this was occurring because every render cycle an interval was being set. When this interval finished the app
re-rendered causing a new interval to be set. This caused after a period an infinite number of intervals to be
active. To prevent this, I had to put the setInterval inside of a useEffect hook. A useEffect hook is traditionally
used to siderun code every render cycle, however it can take a second argument called a dependencies array.
In this dependency array are variables that must change for the useEffect to be called. By setting the

With the PositionSlliders scaled up to display all positions we
have finally achieved a complete fully functioning subsheet
creation page

26

dependency array to have values of timerActive (that changes every time the user unpaused or paused the
game), the interval is only set when this happens preventing the memory leak from infinite render cycles
occurring. Once I had updating time variables, I formatted these using Regex to make it appear nice and then
I rendered it a text component.

useEffect(() => {
 if(timerActive)
 {
 const interval = setInterval(() => {
 //Update time related variables
 let updateMin = false
 setSecond(seconds => {
 if(seconds == 59)
 {
 updateMin = true
 return 0
 }
 else
 {
 return seconds+1
 }
 })
 if(updateMin)
 {
 setMinute(mins => mins+1)
 //Set timer to false if end of interval has been reached
 if((minute+1) == intervalLength)
 {
 setTimerActive(()=> false)
 }
 }
 }, 1000);
 //Interval must be cleared to prevent memory leak
 return () => clearInterval(interval);
 }
//Dependecies array means useEffect is ran everytime timerActive
}, [timerActive]);

Connecting the Subsheet Creation Page with the Game Overview Page
With the timer setup I could now add the two pieces of functionality that are dependent on the timer. That
being the substitutions countdowns and the active game situation. For this to work we needed to get relevant
data from the completed subsheet. For the sub countdown we would need the minute each substitution
occurs and who is subbing on for who. For the active game situation, we would need the same data plus the
coordinates of each position in the 2d formation array so it could be overlayed on the game pitch like on the
formation screen. To get this information I wrote a function that is called when a user finishes their subsheet.
The function creates sub_data by iterating through all the position_data to find occurrences of where the
player in a position changes. These substitutions and their relevant data are then saved as objects in a list.
This subdata is then passed through a reducer to be saved to the global store variable sub_data so it can be
accessed on the game overview screen.

let subData = []
let subId = 0
//Loop through all of the positions
for(let position =0; position< globalState.position_data.length; position++)
{
 //Set up constants to improve readability of code
 const positionTimeline = globalState.position_data[position].position_timeline
 const positionInitials = globalState.position_data[position].position_inititals
 const positionCoordinates = globalState.position_data[position].position_cordinates
 let priorPerson = positionTimeline[0].name
 for(let min = 0; min < positionTimeline.length; min++)
 {
 //Check wether player has changed if so sub has occured
 if(priorPerson != positionTimeline[min].id)
 {
 subData.push({subId: subId, subMin: min,subPlayerOn:priorPerson,subPlayerOff:
positionTimeline[min].name,subPos:positionInitials,subCords: positionCoordinates})
 //Sub id used so all subs have unique id
 subId ++
 }
 //Set the id of prior person to the current person so on the next ieration its the prior person
 priorPerson = positionTimeline[min].id
 }
}

//Save game data through reducer
createSubData(subData)

Early protypes of the game overview screen. Clock is in top left with
pause/play buttons. All other components are placeholders.

27

Substitution Countdown Component
On the substitution countdown component, I needed to communicate who’s currently on the field, who’s
subbing onto the field, the time in the match this substitution occurs and the position it is occurring at. I
created a component that displayed the position of the sub and who’s subbing. I next had to find how long
until the sub occurs. To do this I found the difference in minutes and seconds between the time of the
substitution and the current time then formatted that time. I then set up a FlatList with this component as
the renderItem and the data as the sub_data as a result it rendered all the upcoming subs in a list.

//Determine the diffrence in time between the game time and
the given time for the sub
let minToSub = subMin - minute
let secToSub = 60-second

//If the secs are 60 make it equal to 0 if not minus 1 from
min to sub as you are cutting down
if (secToSub == 60)
{
 secToSub = 0
}
else
{
 minToSub -=1
}
const formattedSubTime = '-
'+(minToSub+':'+secToSub.toString().padStart(2,'0'))

Active Game Situation
Next was to show the current state of the pitch and who was
currently on the field. To do this I wrote a function that would return
a 2d formation array – which could then be overlayed on the game
pitch – given a minute of the game. The function took a minute as a
parameter and then iterated through the data of all positions at that
given minute. It would then retrieve the coordinates value of the
position on the pitch and the name of the player at that time. With
this data it would set the value of a pitch 2d array to the players
name of the player on the pitch at those cordinates value. Once it
had iterated through all these values it would return a complete
pitch 2d array. I called this function every time the minute was
incremented by the clock and saved its return variable in a
gamePitch state hook. I would then pass the data in the gamePitch
hook into the GamePitch component I used for formation selection.
This would result in a game pitch appearing with the players’ names in the positions they are in.

Implementation of the Final Minor Features of the MVP
At this point the app now resembled the MVP I planned with A K . However, there were a few rough
edges I had to smooth out before the first technical test, such as adding an options screen and the ability to
save subsheet.

Option Selection Screen
Currently the number of minutes in each subsheet was
hardcoded at a value of 15. This worked fine for testing the
apps features internally. However, as I began to move towards
carrying out tests with teams, I would have to consider the
difference in game lengths between teams dependent on their
sports and grades ie 7 aside hockey plays 45 minutes games,
senior football plays 90 minute games. A second consideration
I made was whether it would be feasible to fit a full 90 minutes
onto a subsheet. I tested this out and if the minutes on a subsheet became too large it became impossible to
assign a player anytime as the RNPickerSelect for each minute became too small to tap. Based on this I
planned to implement a way to display only one interval at a time on a subsheet and allow users to toggle

Above is the subsheet used. Below are the upcoming subs based on this data.
At this point the game clock was at 12 seconds complete.

Screenshot of complete game overview screen from the first
technical test of the app

Game options screen

28

between these intervals. This would mean only 45 minutes at a time would be displayed for a 90-minute
football match making the minute RNPickerSelects easier to tap.

To account for these considerations, I decided to make an options screen that appears as the first page of
the app that allows users to select the number of intervals (2 – halfs, 3 – thrids and 4 - quarters) and length
of the intervals in their game. I used a RNPickerSelect to allow users to select the number of intervals and
interval length. When they selected a value, I called a reducer I wrote to save the number of intervals and
length of intervals to global redux state variables. In addition to this I added a TextInput that allowed users
to enter their team’s name.

Implementing Multiple Intervals on the Subsheet
The next step was accounting for the existence of multiple intervals in my code. Currently if a user created a
4 interval 15-minute game, the subsheet screen would display a 60-minute long subsheet as opposed to 4
individuals 15 minute subsheets that could be toggled between. The first step in making this transition was
setting up a toggle that allows users to select an interval to display. I first setup a displayed interval state
hook, then created a toggle that allows users to change this displayed interval. To make this toggle I mapped
an array of the length of total intervals and rendered a pressable for each item in the array. I then updated
the displayed interval when these Pressable’s were pressed to their respective interval before finally applying
conditional styling to make it obvious what the currently displayed interval was.
// Renders an item for each item in the list. In this case the length of the list is the same as ammount of intervals
{[...Array(gameData.total_intervals)].map((prop,i) => {
 //i+1 is used as intervals dont at 0
 const interval = i+1
 //Conditonal styling for if selecetd
 const color = ((interval == gameData.current_interval)? '#95b7ed' : 'transparent')
 const textColor = ((interval == gameData.current_interval)? 'black' : 'white')
 return(
 <Pressable key = {i} onPress={()=>{updateCurrentInterval(interval)}} style = {{...styles.intervalButton,
backgroundColor:color}} >
 <Text style = {{...styles.intervalText,color:textColor}}>{interval}</Text>
 </Pressable>
)
})}

Now with the ability to toggle between intervals to display, I had to reflect this change visually. To do this I
had to implement offsets in the PositionSlider such that the part of the position_timeline that was being
rendered reflected the current displayed interval. After doing this I set up intervals on the game overview
page by adding a state hook for played intervals. At the end of every interval the clock would pause, and the
time variables would reset, signifying the end of the interval.
//EXAMPLES OF CHANGES MADE IN CODE TO ACCOUNT FOR MULTIPLE INTERVALS
//Condtional rendering on the component layer to only render the current itnerval to the screen
{positionTimeline.map((prop,i) => {
 if(i >= (currentInterval-1)*intervalLength && i < ((currentInterval)*intervalLength))

//Start tile of drag being offset by the current interval
const dragStartTile = Math.floor(drag.nativeEvent.x / positionIntervalWidth) + intervalLength*(currentInterval-1)

Save System and Selection of Persistent Database
The next thing to set up was a save system. It was necessary
that users would be able to save their subsheet so they could:
a) use them again in the future, meaning they only must set up
a subsheet once, and b) set subsheets up before a match. I first
had to decide on how I was going to store this data. Two
constraints guided my decision-making process on a database.
The first was that the database had to have offline only support.
This was for two reasons. Firstly, most people would be using
the app out on a sports pitch where Wifi was inaccessible.
Secondly, online databases are a lot more work to setup and
would require me to make use of external APIs and tools such as AWS. The second constraint was that the
database had to have object support or be JSON based. This was because I didn’t want to have to setup a
serialization process to change my data stored in objects to another form. These two constraints eliminated
basically all databases apart from Redux Persist. Redux persist takes your redux state object and saves it to a

Interval toggle for game with thirds

Data flow with Redux Persist

29

persisted storage. Then, on app launch it retrieves this persisted state and saves it back to your Redux store.
Redux Persist is commonly used in combination with an online database as a failsafe in case the user can’t
access Internet. However, it works as well as an offline-only database. The major plus of Redux Persist is that
it only would take me at most five lines of code to implement as I already had Redux setup.

//Setup redux persist
const persistConfig = {key: 'root', storage: AsyncStorage, whitelist: [] };
const pReducer = persistReducer(persistConfig, rootReducer);
const middleware = applyMiddleware(thunk);
const store = createStore(pReducer, middleware);
const persistor = persistStore(store);
With this set up I had to whitelist a specific reducer in the persistConfig to persist the state off. I decided that
I wouldn’t preserve the state of the whole app. Instead, I would make a new redux state variable called
save_data. I would save all subsheets and players to this as an object then persist this state so users can
access their saved subsheet later. The first thing to setup was saving the data. An autosave system that saved
periodically would be too memory intensive as it would have to do constant comparison between the state
to save and saved states to determine whether a save would be necessary. Instead, I made saving occur at
two points. Firstly, I added a save button to the subsheet management screen, that when pressed the current
subsheet and players were saved. Secondly, when the match begins, I would save the subsheet and players
used in that match. When the save was triggered, I would call a reducer to add a new item to the global
save_data list.

Loading the Saved Subsheets
With the save data now being stored, I now had to implement a way for users to load their saves. To do this
I first set up a home page. On this home page there were two options for users. The first was to create a new
subsheet that took users to the subsheet option page to begin their subsheet creation and the second was a
button that took users to a load save page. On this load save page I created a SaveView component which
displayed the details about a save. I then created a Flatlist that rendered a save view for each of the saved
subsheets.

//Saveview component displays the name of the subsheet formation used and time it was saved.
<View style = {styles.saveView}>
 <Text style = {styles.titleText}>{item.save_name}</Text>
 <Text style = {styles.subText} >Formation: {item.save_positionsData.formation_name}</Text>
 <Text style = {styles.subText} >{format_time()}</Text>
</View>

Next, I added two Pressable’s to the SaveView component. The first had a tick icon that when pressed loaded
the subsheet. To load the subsheet I wrote reducers that overrode the current player and position data (the
displayed subsheet) with the loaded data. After that it navigated users to the subsheet creation page with all
the save data loaded. The second pressable had a trash can and when pressed called a reducer that deleted
the save data.
//Adjusted index is set to prevent indexing errors that may occur due to
subsheets being deleted
const adjusted_index = savedState.save_data.findIndex(item => item.save_id == i)
//Update the player,position and game data
uploadPlayerData(savedState.save_data[adjusted_index].save_playerData)
uploadSubsheet(savedState.save_data[adjusted_index].save_positionsData)

//Load the page that the sliders is on
navigation.replace('SubsheetCreation')

//Reducer that deletes the save data at a given index
case DELETE_SAVE_DATA:
 return{...state,save_data: state.save_data.filter(item => item.save_id !==
action.payload)};

Bugs Caused by Asynchronous Logic
The second bug was that if a user rapidly created players or saved the game, multiple objects with the same
id would be saved to their respective data structures as the indexing key would not increment in between
taps. This would cause indexing errors to be thrown and glitches to occur due to them all having the same id.
After a lot of thinking and debugging I found the issue to be in the asynchronous nature of state hooks. The
indexing key I was incrementing for the id of the player objects was a state hook and when I incremented it,
it updated asynchronously. This meant that there would be a delay between the update being called and the

Multiple SaveViews displayed on the save schedule

30

value changing due to the nature of asynchronous logic. This meant when tapping rapidly you would use the
non-updated version of the index key resulting in multiple objects in the list having the same id. To address
this, I first set up a state variable for whether the button was tapped and then a useEffect hook. I put the
code of adding the object to the list as the function of this hook and the state variable in the dependency
array. The use of the useEffect meant that only once per render cycle was the code ran after canAddPlayer
was update and therefore multiple objects couldn’t be added with the same index.

useEffect(() => {
 //We check if canaddplayer is true as after adding a player it is set to false causing the useffect hook to be called a
second time unwanted
 if(canAddPlayer)
 {
 createPlayer({id: playerState.player_index,name: '',positions: [],selectedPos: null,
 color: '#' + Math.floor(Math.random()*16777215).toString(16)})
 //Increment the player index
 incrementPlayerIndex(1)
 setCanAddPlayer(false)
 }
//CanAddPlayer is set to true when the plus button to add a player is pressed, this code then runs at the first render cycle
following that
},[canAddPlayer]);

Refinement Process
It was now the last weekend of term two. I had achieved my planned minimal viable product and had a few
weeks until the start of term three when I planned to roll out SUBlime to a large testing base. During the
refinement process I planned to carry out a technical test to determine if the app would work with
widespread testing without crashing, get in contact with more stakeholders to widen testing base and
address any glaring design and technical issues and finally add some outstanding features such as the
gametime overview, which I had put aside earlier in favour of completing the MVP so a technical test could
be carried out before the end of the term.

First technical test
Goal of first technical test
With this technical test I wanted to try the app out in a low stakes game environment with the purpose of
determining whether the app would work technically across a whole game and would therefore be ready for
wider scale testing. For this testing I reached out to Jakarta Klebert, a friend of mine, captain of the 1st XI
hockey team at college and a junior hockey team coach. As this team was junior and very social
Jakarta said he wouldn’t mind if the app didn’t work.

Beyond the technical aspects this test had a few other goals. Firstly, I wanted to observe how intuitive and
easy the app was to use by handing Jakarta the app and letting him try and set it up without me giving him
pointers. This could reveal any UX issue. Secondly, I wanted to collect feedback from Jakarta and get his
suggestions for improvement. And finally, I wanted to see how the players in the team interacted with the
app.

Setting up App for 7 Aside hockey
Prior to the testing on 2nd of July I had preliminary discussions with Jakarta surrounding game formations in
7-aside. Prior to this I had no formations setup in the app for 7-aside. Through discussion he introduced me
to several 7-aside structures that he had used or seen being used in competition. All the formations were
added to the app’s list of formations.

Results of Technical Test
Technically the testing of the app was largely a success. The app did not crash, and Jakarta was able to create
a subsheet and play it out without any issues. Two minor technical issues did arise. The first was around the
iPad screen timing out causing the screen to go to black. When this happened the app clock no longer
progressed causing the time on the app to become desynchronized from the timer on the scoreboard. This

Error thrown with two saves having the same index

31

was a frustrating bug to fix as I was unable to replicate it in my Expo testing environments and it only arose
in live environments. The solution I found to this was using the Keep Awake library20. This library allowed me
to make use of a keepAwake state variable that I set to true whilst the game was running. This caused the
screen to stay awake and the desync to not occur. The second technical issue was to do with the performance
of the PositionSliders, I will touch on my solutions to this later in the report.

Observationally I noted a few things when Jakarta used the app. The first was that Jakarta found some of the
settings in the game setup confusing, reflected by him asking me what they meant, so I remedied this adding
a brief description to all setting categories that could be considered vague. The second thing I observed was
that the PositionSliders were quite unresponsive to Jakarta’s touch, and he had to
press them multiple times before they allowed him to drag. This was something I made
note of to improve when I inevitably overhauled the PositionSliders for the third time.
The feedback I received explicitly from Jakarta largely focused on how long the game
subsheet took to setup. Jakarta suggested a solution that a new setting should be
added that allowed all the game intervals to be the identical in when substitutions
occur. He thought this would be a good idea as coaches often have the same
substitution patterns across intervals. This meant a coach only had to set up the subs
for a single interval as opposed to three or four. I also made note of this for my PositionSlider overhaul.

The interaction of the players in the team with the app exceeded my expectations and was the highlight of
the first test. Throughout the game the currently substituted players would go and check the iPad every 30
seconds to see how long it was until they were subbed on (even though their substitution may be four
minutes away). It also led to some awkward questions being asked about Jakarta’s substitution practices
when players realised a player was barely getting subbed in comparison to everyone else. A few players also
helpfully pointed out a bug on the game screen that caused the names to be displayed the wrong way when
a sub was occurring which I quickly changed.

Firewall related issues at school
The momentum of the first successful test did not last long as the school IT department unintendedly
massively impede the development of my project. On my return to school on Monday I was met with an
update to the school firewall. This update prevented Expo from working meaning I couldn’t test my app at
school. I went up to the schools IT department to see if they could provide a work around but unfortunately,
they were unable to help. Therefore, I changed how I managed my time spent on the project. While I school,
I worked on the write up and started getting in contact with more stakeholders for testing. At home where
there was no firewall, I focused on developing the app.

20 https://docs.expo.dev/versions/latest/sdk/keep-awake/

Expensive iPad I am borrowing resting above a metre drop
onto concrete

Players checking out the iPad during the game

The setup subsheet for the game

Examples of added
description to options

https://docs.expo.dev/versions/latest/sdk/keep-awake/

32

Third meeting with A K
This meeting with A K came in the final week of Term
2. It had been a while since our last meeting therefore I first
focused our discussion on what he thought of the state of
SUBlime. He stated he was happy with the functionality
provided by all the features and found the process of setting
up a subsheet for a game intuitive. He noted a lack of polish
when it came to the UX and design of the app which I largely
agreed with. The largest criticism came against not what
existed in the app but what was missing. He noted the lack of ability to see the total time for each player in
a game a feature he had stressed the importance of since our first meeting. I agreed with him on this criticism,
and I explained that I had pushed this feature aside to prioritize getting the features of the MVP done for a
technical test.

The second part of the meeting focused on testing. A K wanted to hold out on testing until the player
time overview feature was implemented. This was frustrating as I was hoping to get the testing underway as
soon as possible. However, this frustration quickly faded as I realised there was no sport for the next two
weeks due to the school holidays. As far as testing went A K was willing to support a testing model
of sending out the app to coaches to download alongside a survey link for feedback. This was extremely
helpful to me as it meant I could gain access to a large testing base. Additionally, he was happy to send out
the app to a wide range of coaches from all of the core winter sports (Football, Hockey, Rugby and Netball).
Finally, we planned to meet again on the first week back at school for term 3 to plan to roll out testing.

Contacting Regional Sports Governing Bodies
Whilst being in discussions with A K about rolling out
testing with StAC prep school sport teams I also got in contact
with Netball Christchurch, Mainland Football and Canterbury
Basketball through email. I had held off contacting them until
now, as they would likely only be willing to consider discussing
the app if it was functionally complete and had prior success in
testing. I had now reached this point. The purpose of working
alongside them was to help me adapt my app to their respective
sports code (through their knowledge of that sport) and
distribute the app to the many junior sports teams they
oversaw. These groups each oversaw upwards of 100+ junior teams respectively, so this could be a huge
testing opportunity. I sent out a basic email with a description of the app asking for a time to meet and
discuss.

Further Iteration on the PositionSlider Component
Although the PositionSlider had already been through multiple iterations, testing within my class and with
Jakarta showed that there was still need for further improvement.

Optimizations to Improve PositionSlider Performance
In my technical test with Jakarta the performance of the PositionSliders was still not the best. Although this
lag had improved over prior iterations of the sliders system the drag was still quite laggy. This lag slowed the
process of creating a subsheet which created a barrier towards users using the app. To analyse these
performance issues, I installed the React Native debugger and ran it whilst I carried out a drag motion to
determine what was using a high amount of memory. What I found was that all the RNPickerSelect’s were
being re-rendered every render cycle during the drag. The re-renders were being caused by the dragBar state
hook being updated forcing a re-render. This large number of re-renders especially in subsheets with longer
intervals was tanking the performance. When addressing this issue, I was limited in what I could do as I was
unable to change the fact that the dragBar value changes, because without it changing no drag would be
visible. Therefore, I had to stop the re-renders occurring on unchanged components. To do this I made use
of the useMemo hook. The useMemo hook memoizes a function, caching it such that it only re-renders when
the component state has changed. A dependency array can be used in which no re-renders occur without

Email sent to

Start of email sent to canterbury basketball. Identical emails were sent
to CNC and mainland football.

33

the value in the array changing. I set the useMemo up in my code in the Flatlist renderComponent that
renders the AddPlayer component which contains the RNPickerSelect for a minute. I put the item value –
which is the data passed to it from the Flatlist - in the dependency array. This change massively improved
performance as the RNPickerSelects now only re-rendered when the data passed into it changed.

renderItem={(item)=>useMemo(()=> AddPlayer(item),[item])}

Overlap Warning When Creating Subsheets
An issue identified with the design of the PositionSlider whilst getting a friend to try it out was that they
didn’t notice that they had assigned a player to two positions at once. Resultingly, they started the game with
a player playing both CF and LH. Originally, I implemented a modal based solution to this, in which a modal
appeared whenever an overlap occurred. This modal approach added length to the subsheet creation process
as it required users to close modals and it increases the total amount of drags, they must make. Therefore, I
opted out of this approach as it went against feedback from Jakarta that the setup process of a subsheet
needed to be shortened.

Instead, I decided to add a visual cue that highlights overlapped players making it obvious to users they need
to address the overlap. To add this visual cue, I added a fourth layer to the PositionSlider - the overlap layer.
This layer went above the visual layer and below the component layer. To create this layer, I first collected
an array of all occurrences of a player playing two positions at a given minute. To get this array I iterated
through the positon_timeline for a position and carried out a check to determine if the player assigned at a
given minute is also playing at a different position at that minute. The value returned is a 1 if there is an
overlap and 0 if there isn’t. This list then goes through the
blobbing process to combine the adjacent overlaps which is
then then rendered through a map method. This is very
similar to how the visual layer is handled and a more in-depth
description of that is above. The visual cue I added to indicate
an overlap was a transparent diagonal cross. This clearly
shows to the user that there is something they need to
address.

Drag Buffer Zones
Behaviourally I noticed that when people tried out the drag functionality of the PositionSlider they placed
their finger slightly to the side of the player they wished to drag when starting their drag. Consequently, the
drag wouldn’t start as the code required the user’s finger to be precisely on the player when dragging. This
would result in them becoming frustrated as they presume the app hasn’t registered their gesture. To address
this, I decided to add a drag buffer zone that allowed users to have their finger slightly to the side of the
player and still have the drag registered. This buffer zone was the adjacent tile, only if the adjacent tile is
unassigned. The index of startMinue must then be adjusted so it is the minute that has the player in it. This
made the drag a lot easier to carry out.

Mirrored Subsheet Across Intervals
As this was feature that not all users would likely want to use, I began by adding an option for users to select
whether they wish to have mirrored intervals on the option screen. Next, I rewrote the reducer for updating
position_data to allow all the intervals to be updated the same if mirroring intervals is selected. With this
implemented it would quarter the setup time for the app for any coaches using it in a 4-interval game.

//0 minute 1 player id 2 position id 3 mirror interval 4 interval length
case UPDATE_POSITION:
 return{...state, position_data: state.position_data.map(
 (content, i) => content.position_id === action.payload[2] ? //Only relavent position is changed
 {...content,
 //Updates position in two cases 1)not mirroing interval but correct minute 2)mirroing intervals and same minute as
changed minute but in diffrent interval ie 2, 17, 32, 47 in 15 min intervals
 position_timeline: state.position_data[i].position_timeline.map((content,i)=>
 ((i===action.payload[0] && action.payload[3]== false) ||
 (i%action.payload[4]===action.payload[0]%action.payload[4] && action.payload[3])) ?
 action.payload[1] : content)}: content)}

The overlapped area is indicated with a visual cue

34

Implementation of Teams
Following the meeting with A K my main goal was to implement the gametime statistics overview. A
prerequisite of this system was storing data of all minutes played so this could be compiled into a single
display. To do this I decided to setup a game_data Redux state variable that stores objects of the minutes
each player played in a game. However, after implementing this, I realised a major design issue. That being
that this stored game_data would not be specific to a team. For example, two users may be using the same
device for different teams, or a keen parent could be coaching both of their kids’ teams. Currently I had no
way to differentiate between multiple teams on a single device meaning that this seasonal gametime data
would be useless as it would contain a mix of players from both teams. To address this design issue, I decided
I would rewrite my backend code to implement teams.

The first challenge of doing this was deciding what data each team object would store. Out of the three Redux
state variables I had setup so far – player_data, position_data and saved_data – I decided to set up a separate
player data and saved data for every team object but keep the position data separate. My rational for this
was that saved subsheets and the players in a team are generally unique to every team but the position_data
- which is displayed as a subsheet - was only a
temporary data store that was previously saved to or
loaded from saved_data. Therefore, the
position_data would serve as a temporary store, that
saved_data from a team object could be loaded into.
Likewise, user created position_data could be saved
into saved_data. I also planned to add a third field to
the team object called game_data which was a list of
objects. One object existed for each game a team has
played, and the object contains a list of how many
minutes each players played in that game.

Making this change wasn’t as much technically difficult as it was a grind. Throughout my code base I had to
firstly rewrite reducers so that they accounted for the team-based system. For example, the PLAYER CREATE
reducer would before, add a new player to the player_data redux global variable, but now to carry out the
same task but the reducer would have to first find the team that is currently in use, then add a player to the
player data field of that team object. Alongside making changes to how data was updated I also had to change
how data was referenced. For example, instead of referencing the player_data array to get a player’s name I
now had to first reference the team the player was on before getting the player data array from that teams
object to get their name from.
//THESE ARE EXAMPLES OF THE MULTITUIDE OF SIMILALR CHANGES I MADE IN MY CODE TO ADAPT TO THIS NEW SYSTEM
//Updated create player reducer to create the player within the currently selected team
case CREATE_PLAYER:
 return {...state,team_data:
 state.team_data.map(
 (content,i) => content.team_id === action.payload[0] ?
 {...content, team_player_data: {team_player_index:
content.team_player_data.team_player_index+1,team_players:[...state.team_data[i].team_player_data.team_players,action.payload[1]]}}
 : content
)};

//Previously I could just refrence player_data now i had to refrence the player_data of the currently selected team
const player_data = teamState.team_data[current_team_index].team_player_data

The final changes made were to the home screen. As opposed to creating or loading a subsheet from the
home screen users now created or loaded a team. I then had to add an options screen for when creating a
team so users could set the name of their team and what sport it was. After creating a team, it would take
users to the old home screen where they could choose between loading a subsheet or creating a new
subsheet. When adding the functionality for loading a team I reused most of the code for loading subsheets,
reusing the SaveView component but changing the data passed into it. When a user loaded a team, I set the
id of that team to a redux global variable called current_team_index. Then when team data is used
throughout the app, the index of the team data array referenced was current_team_index.

Implementing Better Data Management Practises
Whilst rewriting all of this backend code I also took this as an opportunity to update and remove some of my
more egregious data management practices. The main one was in position_timeline. For every minute on

Changes to data flow of app

35

the position_timeline the value was either null or a player’s name. I would then join that name value to the
associated player object to get that players colour. This works until there are multiple players with the same
name. This is because when the join is called it can only join to one of the many player objects with the same
name. This resulted in wrong values being returned. To address this, I moved to a common key system where
instead of putting the name of the player I put the id of the player at a minute in position_timeline. This value
then acted as a common key that was unique to a player preventing a double up when a join is called. In
doing this I had to implement a second step for getting the data of a player. To do this I wrote a function
called get player data. When called this function joined the id passed into the function with a player’s id then
returned all the data of that player.

//Assign color gets the relavent information from the player data strucutre and assigns that color to the slider
export default function getPlayerData (player_id,playerData)
{
 if (player_id != null)
 {
 let join = playerData.find(player => player.id == player_id)
 //If join is undefined player no longer exists
 if (join != undefined)
 {
 //0 for name, 1 for color
 return [join.name,join.color]
 }
 else
 {
 return ['Deleted Player', 'red']
 }
 }
}

It was also whilst setting this up that I realised that should a player be deleted but still exist on a subsheet
the app would crash. This is because the join function would return -1 as opposed to a player object resulting
in the code attempting to reference the name and colour of an object that doesn’t exist. To counteract this
if the join function returned -1, I would make the get player data function return the player name as deleted
and the player colour as red. This would make it clear to the user that there is a deleted player in their
subsheet that they need to remove it.

Reconfiguring Navigation System
Problems with Old Navigation System
From the start of the development, I never really gave much consideration to how the navigation system
worked. My approach was just to stack pages on top of each other. This worked when SUBlime was small but
now SUBlime had a wide range of features
and the navigation system was not keeping
up. The first problem was that navigation
through the app was too linear. This
linearity wasn’t an issue when users moved
forward through the app, but it became an
issue when they tried to move backward
through it. This was because due to the
apps linear nature if the user wanted to go
back to an earlier page, they would firstly
have to press the back button multiple times and secondly undo all of their progress in the app as they move
backwards. This would commonly happen when testers would get to the subsheet creation page, start
allocating players time than realise they didn’t add all their players. They would then go back to add this
player resetting the subsheet. The second problem was that the navigation system struggled with the
introduction of the team system; I now had two home pages at different points in the app, which was not
ideal.

How a deleted player appears on a Position Slider

Overview of current navigation system

36

Use of tab navigator / stack navigation combo
My solution to these issues was to make use of a tab navigator / stack navigation combo. The purpose of
combining these navigators was to break up the linearity of the navigation and make it easier for users to
move between important pages. A tab navigator is a component that controls navigation through buttons at
the bottom of a screen. These buttons when pressed navigated to their respective pages. I setup a tab
navigator at two points in the app. The first was after the user either created or loaded a team. This tab
navigator was called the Team Overview and had buttons for two pages those being a page to load / create
subsheets and the team management page where users could create subsheets. This tab navigator
eliminated the two-home screen issue. The second tab navigator was called the Subsheet Overview and
contained the subsheet creation page and a second team
management page. By including the team management
page in both tab navigators, it addressed the issue of
linearity in the navigation. Although navigation through
the app was still largely linear, by placing the team
management page on both tab navigators’ users didn’t
have to travel back pages to reach it. So, although it
didn’t address the linearity it made it a non-issue. The
stack navigation part of the combo came in the form of
allowing users to move between these tab navigators
through stack navigation.

The implementation of these tab navigators was very boiler plate heavy. For all pages on a tab navigator, I
had to define a screen for each page. Below is the tab navigator for team overview.

const TeamOverview = () => {
 return(
 <Tab.Navigator
 screenOptions={({route})=>({
 headerShown: false})}>
 <Tab.Screen name="Subsheets" component = {SelectSchedule} />
 <Tab.Screen name="Team" component = {PlayerView} />
 <Tab.Screen name="Season Playtime" component = {TimeOverview} />
 <Tab.Screen name="Game History" component = {GameHistory} />
 </Tab.Navigator>
)
}

Gametime Overview Page
With the background work of setting up a team-based system and reconfiguring the navigation I was now
ready to implement game time overviews. The gametime overview is the defining feature of SUBlime as it is
used to ensure equal gametime distribution. It is also what A K identified as the most important
feature. I wanted to show users the gametime distribution at two points: firstly, on the Subsheet Overview
tab navigator when they are creating a subsheet. This would allow them to make use of the tab navigator to
swap between the gametime distribution page and the subsheet they are creating. Based on the distribution
of gametime in the subsheet they could then make changes to their subsheet to make the distribution of
gametime more equal. They could then check back to the distribution of gametime page to ensure that these
changes resulted in a more equal gametime distribution. The second place was when they are on the Team
Overview tab navigator to allow them to see the seasonal overview of gametime distribution. On this page it
would be clear if any player was consistently getting less gametime, allowing coaches to give more gametime
to that player in the future. A final design consideration of the gametime overview page was to ensure that
all the gametime distribution information fit within in a single screen allowing it to be screenshotted and sent
to parents.

Refined navigation system

Tab navigator for subsheet overview. Note the addition of the gametime option is discussed below

37

Calculating Gametime of Each Player
I decided to first do the subsheet gametime distribution as it would be the easier of the two. First, I setup a
new page to show this time data and added it to the Subsheet Overview tab navigator so users can tap
between the subsheet and the time overview, allowing them to adjust the subsheet based on what the
gametime distribution is to make a more equal subsheet. To collect the time data over a subsheet I created
a list. In the list there was a further list for each player. This list was of length 2 with the first item being the
id of the player and the second minutes played of the player– this was initially set to 0. I then iterated through
all assigned minute of gametime in the position_data array getting the id of the player assigned at that time.
I then found the index of the item in the time list that had the matching player id and added the minutes to
the item. I then used a FlatList to render a component for each player that showed their name and minutes
played. I deliberately didn’t make the time component for each player large. This was done so all the players
time components in a team could fit onto the gametime allocation screen without having to scroll to reach
any of them. As all players and their gametime was on a single screen, this screen could then be
screenshotted by coaches and sent out to parents. Therefore, making it easy to have transparency within
gametime.
//Create list for all players index 0 id index 1 minutes played
let timeData = []
for(let players = 0; players < team_data.length; k++)
{
 timeData.push([team_data[players].id,0])
}
//Loop through all assigned minutes
for(let position = 0; position < positionsData.length; position ++)
{
 for(let minute = 0; minute < positionsData[position].position_timeline.length;minute++)
 {
 let player = positionsData[position].position_timeline[minute]
 if (player != null)
 {
 //Find the index of timeData where the players have the same id
 let indexToAddTime = timeData.findIndex(player => player[0] == player)
 if (indexToAddTime != -1)
 {
 timeData[player][1] +=1
 }
 }
 }
}

Displaying Gametime Distribution Across a Season
With gametime distribution being viewable per game, I next added a seasonal breakdown of gametime. To
do this I added a new field to the team object that was a list that stored game_data. Then when the player
began a game, I would run the function above to collect the time breakdown for each player before saving it
to this game_data array. I now had the data and just had to present it visually. I set up a new page in the
Team Overview tab navigator for seasonal gametime. In here I wrote a function like the last one to calculate
total time for each player. This function iterated through all the saved game_data gametime objects summing
the total time each player played across all the games. I also
implemented a check to determine if a player still existed. For
example, a player may have played the first few games of a season
before quitting and hence was deleted from the app. The app would
throw an error if I tried to display time for a non-existent player, so I
had to account for this. Similarly, to the time overview of a subsheet
I then rendered this data using a Flatlist and made it so all players
time data could be on a single screen so it could be screenshotted
and sent to parents.

Game History
This system would work for an ideal user, but most users are not ideal. For example, users may accidentally
start a game early then cancel it because they started it too early then start it again when the game begins
properly. This would result in the time data being added twice to the seasonal count, with no way to remove
this time data resulting in inaccurate time data across a season. This was reflected by testing carried out in
my class were testers claimed there was a bug where the time was added twice to the seasonal total but they
had instead started the game twice. My solution for this was to set up a game history page that would be on
the Team Overview tab navigator. On this page users would be able to see played games and delete games
they accidentally started. To do this I set up a FlatList with a component for each game played and added a

Allocation of gametime in a team across a subsheet. Each time
component for a player has their name and minutes played.

Gametime allocation across a season

38

pressable to delete that game from game history. As this game_data was the same data used to calculate
total seasonal gametime by deleting a game it removed it from the seasonal total gametime. Once I
implemented this, I realised it was impossible to distinguish what game was which. All that was displayed
was a formatted time value which wasn’t very descriptive. Therefore, I needed to add a way to distinguish
which game was which. To address this, I decided I would ask the user who the opponent was in a game
when they started it. This opponents name would then be displayed on the game history page, allowing users
to distinguish between matches.

<Modal
 animationType="slide"
 visible={modalVisible}
 onRequestClose={() => { //Required prop that calls a function when
a hardware back button is pressed such as android back button
 setModalVisible(!modalVisible);}}>
 <View style={styles.centeredView}>
 <View style={styles.modalView}>
 <Text style={styles.textStyleTitle}>Final Steps</Text>
 <TextInput
 style = {styles.textInputStyle}
 placeholder='Enter Opponents Name'
 //Saves the other teams name
 onChangeText={(value)=>{setOtherTeamName(value)}}/>
 <View style = {{flexDirection:'row'}}>
 <Pressable
 style={[styles.button, styles.buttonClose]}
 onPress={() => setModalVisible(!modalVisible)}>
 <Text style={styles.textStyle}>Go Back</Text>
 </Pressable>
 <Pressable
 style={[styles.button, styles.buttonClose]}
 onPress={() => {if(otherTeamName!= '')
{setModalVisible(!modalVisible); setupGame()}}}>
 <Text style={styles.textStyle}>Begin Match</Text>
 </Pressable>
 </View>
 </View>
 </View>
</Modal>

To get from the user who the game was against, I made use of the Modal component.21 A modal is a pop up
like the alert component but differs in allowing what is displayed to be fully customizable. On this modal I
added a basic TextInput for users to enter the opponent’s name and a pressable to submit the modal. Modals
have a prop called visible that determines whether it displays or not. I setup a state hook called displayModal
and set that equal to this prop. This value was then set to true when the user went to confirm their subsheet
and was set to false once users entered a name and pressed the pressable. I then added a new field to the
saved game object for the opponent’s name to store this variable.

Wide Spreading Testing and Expansion of Stakeholders
Meeting with Sara Norton (Junior Netball Coordinator for Christchurch Netball)
After the first technical test I got in contact with regional
sporting bodies to discuss the potential of working alongside
them. Out of these groups Netball Christchurch was the only
group I heard back from within a short time frame. Their junior
netball coordinator S N got in touch with me midway
through Term 2 holidays and offered to discuss the app and
potentially test it with their Future Fern teams. This was great
news as the Future Ferns (year 3-6) grade was the target
demographic for this app as equal gametime is imperative at
this age. After initial discussion over email with S we made a
time to meet at the start of term 3.

Prior to my meeting with S , I went through the process of setting up my app on Expo Go on the testing
channel as a published build. This was simple to setup and just needed to run the command expo
publish:testing. It was necessary to do this as when I met with S at the Netball Centre, I would

21 https://reactnative.dev/docs/modal

Reply received from Sara from CNC to organize meeting time

Original game history display. The only shown field is time of game
making it hard to distinguish between matches

Updated game history page. Shows who the match was
against.

https://reactnative.dev/docs/modal

39

not have access to Internet and therefore couldn’t use the expo testing network. By publishing I could access
the build offline allowing me to show her the app.

I had carried out this process before when showing the app to A K last term and when doing the
technical test, but it only became a relevant topic to discuss now. This was because when attempting to set
this up I kept on getting a bug where the app would white-screen when adding a new player. I was left
perplexed by the fact the bug only occurred on the published build. I frantically tried to fix this, but it was
10pm and to add to the stress alongside it being my meeting with S tomorrow it was also the first day
back at school for term 3. Debugging this white screen was near impossible for two reasons. Firstly, I couldn’t
replicate the bug in my test build, and it would only appear on the published build. When the bug occurred
on the published build there was no error message making it extremely hard to isolate the issue. Additionally,
as it was a published build, I couldn’t make use of any debugging tools to gain error logs. Secondly, it would
take two minutes to publish the new build, followed by a two-minute download onto my phone. This meant
the process of debugging was extremely slow. I attempted to fix this error for about four hours before
eventually giving up for the night. Luckily, I had a published build from a month ago when I last met A
K that I could show S . This would do but was not ideal as the app had progressed a lot since then.

Despite the mishaps the night prior trying to get Expo distribution working the meeting was surprisingly
successful. S was very supportive of the idea of the app as she believed there was a clear need for it. She
explained to me about how they had a substitution management app for non-junior netball and said prior to
my email that she was in search of a substitution management app to use in junior netball. She was very
happy with all the features and believed there was a real demand for its use. My discussions with her also
revealed a helpful application the app had. Sara talked a lot about how she often has to deal with parents
complaining about their children not getting enough gametime resulting in heightened parent-coach tension.
She believed that the gametime statistics was a clear remedy to this as it could be used to easily and
transparently communicate to parents the distribution of gametime. Because of being able to send this data
to parents, she believed it would remove this tension allowing a greater team spirit and coaches being able
to coach without having a target on their back from the parents.

S was also extremely helpful in explaining how I should adapt the app to netball, explaining how positions
and subs work in netball. The greatest success of the meeting was S ’s willingness to carry out testing. She
said that she overlooked 160 Junior Netball teams and was willing to distribute the app to all of the coaches
alongside actively encouraging its use at manager meetings. This was a huge success as it opened the door
to massive amounts of testing and feedback. The final topic of discussion was the time frame to carry out the
testing. She explained there was four weeks left to the netball season and was willing to carry out testing in
the coming weeks games. Although tempting I opted to organize the testing for the last two weeks of the
season, giving me a two-week grace period to get the app sorted for mass testing.

Fourth meeting with A K
At the start of term 3 the winter sport season was in its twilight, so it was necessary to get testing with StAC
teams under way. I organized a meeting with A K for the second day back of the term. As it was the
day following the meeting with S , the white screen error still persisted, so I was unable to show A K
the work I had done over the holidays adding the team system he had requested. Luckily, I had a few
screenshots saved that I could show him. Going into the meeting the agenda was largely the same as the
netball meeting.

Info sent me to set the app up for netball

Highlighted date was the only
remaining dates to test the app

Email sent to A K to organize 4th meeting

40

A K was impressed with the progress of the app and believed the app was test ready. However, we
both agreed on two further steps before the app could be sent out to StAC teams for testing. First, I would
have to adapt the app to different sports environments, because at this point I only had it set up for hockey
and the relevant information to setup it up for netball. I had also lost hope in Mainland football and
Canterbury Basketball replying to my email – within a reasonable time frame - so I had to get the information
to adapt the app to other sports in another way. A K gave me a list of contacts of Heads of Sports at

 College. The second request he had before testing was for me to compile a document that
explained the setting up of the app for testing on Expo, so coaches could easily install and use the app.

Beyond this A K also suggested the implementation of a feature that allowed changes to be made to
a subsheet midgame. He believed this would be worth implementing to account for the possibilities of
injuries. Currently if a player is injured the subsheet will become desynced from the game situation as the
app will try and substitute on this injured player. By allowing changes to be made to the subsheet mid game
this injured player can be removed from the subsheet, addressing this issue.

Meeting with College Heads of Sport
After the meeting with A K , I made contact with the relevant heads of sport at over email. Out
of the list provided I decided to contact the Heads of Sports for winter sports – as they were mid-way through
a sports season and could therefore provide testing.

The people I contacted were as follows

• J C – Head of Football at
• B E – Head of Basketball at
• M J – Head of Rugby at

All of them replied stating their excitement and interest in the
project and organized a time to meet up to discuss.

Meeting with J C (Head of Football at)
The first of the three heads of sports I met with was J C . J was the head of football at
alongside working as club director for the local sports club also has a wealth of
experience as a former football player, playing for pro teams in America, Guatemala, Australia, and New
Zealand. In addition to this J has done work in the past as a sports analyst for a football team. J
therefore has immense insight as both a football player and a coach.

The meeting started with me showing J the app. He was impressed with the app and explained that he
already makes use of a substitution management app but pointed out that my app uniquely had two features
beyond his currently used app. Firstly, a system that counts total minutes played across the each game and
season and second, a game overview screen that showed the current field of play and counted down to
upcoming subs. J recognized these two features as immensely useful and believed they were lacking from
his current app.

Next J went through a logical thought process of a coach using this app and what concerns / issues they
may have with the app. The first thing he questioned was, what would happen if a player got injured during
the game. This further reaffirmed A K ’s feedback about adding a feature to allow changes to a
subsheet midgame. The second thing he pointed out was to do with seasonal gametime. J emphasized a
lot how much he liked this feature, but he noted that inequality in gametime across a season could be simply
due to a player missing a game because they’re on holiday / injured resulting in them not getting any minutes
for a game. He said it would be crucial to add some sort of system to account for the missing of games in
gametime distrubtion.

The next part of our discussion was about setting the app up for a football environment. I had the pleasure
of a passionate lecture from J C about the pros and cons of a range of different formations in football.
The conclusion from this lecture was that there was a lot of variation of formations in football, more so than
hockey. This meant that it would be hard to account for all formations like I had done in hockey and netball.
He gave me a few standardized structures such as 4-3-3, 4-4-2, 4-4-2 diamond and 3-4-3 which I added. In

Email sent to to organize testing for rugby.
Similar emails were sent to

41

order to account for this large variation in structures he suggested I add the ability for users to create their
own formations. J also talked about how in junior football there is 7-aside and 9-aside so there would be
need to also add these options. Beyond that, substitution rules in hockey and football – at a junior level –
were largely structured the same, so not much change was needed.

The final point of discussion was about testing. J offered three forms of testing. Firstly, he was keen to
test it with the College First XI girls’ team he coached. This was unique testing environment as
all other organized tests thus far were with junior teams in a low stake environment; this was a competitive
high-stake environment. Secondly, he said he was happy to send out the app to football teams he overlooked
to test. Finally, he suggested that we meet again another time over summer to set the app up for, and carry
out testing with Fustal teams.

Meeting with B E s (Head of Basketball)
Following the meeting with J C I met up with B E later that day. B is the coordinator of
basketball at College. In addition to this he is an accomplished basketball coach and player
himself. The meeting began with me showing B the app. He similarly expressed that he was impressed
with the app and believed it had immense promise. B then showed me the current programme the school
used for basketball. The programme was called Hudl22 and it managed statistics / total minutes played for
teams. Although Hudl was a professional and complete product he pointed out a couple advantages of my
app. The first was the ability to view game time across a season; Hudl only allows you to view minutes played
for each game. The second was that my app had a visual display during the game, that tells people when to
sub; Hudl only showed statistics after the game and could not be applied in this way. Finally, my app could
be used to create subsheets a feature Hudl lacked.

In terms of adapting the app to Basketball we broke the discussion
into two parts. First to do with competitive Basketball. B
believed that at a competitive level the app didn’t provide enough
flexibility to make on the fly changes. He explained how basketball
coaches make subs based on how many fouls a player has made,
how players are playing and their fitness level. These changing
variables mean that basketball coaches at high levels often go off
their prescribed subbing plan making the app not very useful.
However he noted if I implemented the ability to make changes
to the subsheet midgame – like A K and J suggested –
it would remedy this issue as coaches would be able to adapt their
subsheet to the game situation midgame. This further highlighted
the need to add this feature as it would expand the user base of the app to competitive play alongside social
sports.

The conversation then shifted to social / junior basketball. He believed that the best use of the app would be
in social / junior basketball where enjoyment in these grades was determined by getting time on court as
opposed to winning. He noted that substitution rules aren’t as strict in social / junior basketball and therefore
would not have to make the considerations made in competitive.

The final thing discussed was to do with testing. Social Basketball provided a unique testing opportunity. This
is because there were six social basketball games at every Friday night and all of the games were
overseen by a coordinator M W . B E suggested that I organised a time to meet with M
W and teach him how to use the app. He then said M could pass it on to basketball coaches on the
Friday evening and teach them how to use the app. This was advantageous as it would eliminate the need
for basketball coaches to install the app on their own devices and instead could make use of a pre-setup
device. This would make them more likely to try out the app and provide feedback.

22 https://www.hudl.com/

Hudl stat page

https://www.hudl.com/

42

Meeting with M J (Head of Rugby)
The last meeting, I had was with Mr J . This conversation was by far the briefest as the app has a
limited application to Rugby. This was because Rugby makes use of archaic substitution rules that only allows
substitutions to occur at fixed points in the game. Because of that the app had very little application for
managing subs during the game as it was easier for coaches to announce their subs at these fixed time as
opposed to setting up the app beforehand. However, Mr J did express his liking for the seasonal
gametime overview as he viewed equal gametime as a key pillar of junior sport.

In the end we decided to not carry out any testing with rugby as my effort setting up testing would be better
suited for other sports. Instead, we added a formation for rugby into the app so that the option could be
available for rugby coaches to use the app further down the app. Mr J provided me a rugby
formation; luckily rugby has fixed positions with little variation so only adding one formation was nesscary.

Preparations for widespread testing
I now had a two-week window before I planned to roll out the app. I broke these tasks down that I wanted
to complete in these two weeks.

1. Fix critical bugs that prevent the app from working
2. Test out on different devices and make bug fixes were appropriate to allow users on all devices to

use the app
3. Noob-proof the app; I.e. making the app easier to use and prevent the user harming themselves
4. Implement the new sports to the app
5. Add requested features from meetings with stakeholders
6. Set up a distribution method for testing.

Bug Fixing
The first task I carried out was fixing bugs. It was crucial that I had a bug free app when the app was sent out
for testing. This was because crashes and major bugs would prevent users from using the app. Also, if the
app was buggy all the feedback from testers would focus on bugs as opposed to features.

The first critical bug I fixed was the white screen bug. As explained above this was extremely hard to debug
due to it only appearing in published builds. To identify what the issue could be I removed code from the
problematic PlayerTab component (A PlayerTab component was created for every new player, as the app
crashed when a player was created, we know the PlayerTab is at fault) systematically and re-published the
project until it ran. This would hopefully isolate the problematic code. This made no change to the white
screen appearing. Eventually I had removed all the code and instead put in a normal text component. The
white screen persisted meaning that the code inside the component was not at fault.

I then realised that I was still importing data and functions into the component, meaning that these imports
could potentially be the issue. This was confirmed when I imported nothing, and the white screen didn’t
appear. Now I had to identify which of the imports was the issue. Like the process of slowly removing code
part by part I slowly removed the imports from the component. As I removed the imports, I noticed a trend;
there was no white screen when only importing data but when a function was imported the app white
screened. My solution to this was moving the PlayerTab component inside the scope of the TeamManagment
component. As the functions being imported were defined in the TeamManagment scope, the PlayerTab
component no longer had to import these functions as they now inherited them from the TeamManagment
scope.

Code ran Results

Importing: Functions and Data
Outcome: White Screen
Show: White screen not caused by code as only plain text
component returned.

Importing: nothing
Outcome: No white screen. Text appears.
Shows: Imports are at fault for white screen

Importing: Only data.
Outcome: No white screen. Text appears.
Shows: Data imports not at fault for white screen

Importing: Only functions.
Outcome: White Screen
Shows: Function imports are at fault for white screen

43

The second critical bug I addressed was the multitude of indexing errors being caused by a team being
deleted. As explained above in the setting up of the team reducer, I store a value of the currently loaded
team’s id and that value is used as the index when retrieving data for the selected team from team_data.
This worked initially but upon adding the ability to delete teams the variables for a team’s id and their index
became desynced. For example, a list of five teams were deleted apart from the last one. The last team has
an id of 4 but its index in the list is 0. This means when the current selected teams id was used to access the
data it would check at index 4 but no value existed there causing an index error. I fixed this by adding a
variable for adjusted team index which is retrieved by getting the index of the team that has an id matching
up with the current_team_id.
//Gets the id of the currently selected team. Then finds the index that matches up with that id in team data.
const team_id = generalData.current_team_id
const adjusted_team_index = teamData.team_data.findIndex(item => item.team_id == team_id)

Other minor bugs fixed was the extending of the implementation of the overlap warning system to do a check
for a player overlap before starting a match to prevent users starting a game with a player in multiple
positions in a given minute. Additionally, more minor bugs were fixed such as applying a filter to the seasonal
gametime overview to prevent deleted players from causing indexing errors.

Device Specific Glitches
Most of the development of my app up to this point had been done on a
single iPad. Consequently, I had at times, styled parts of the app to fit an
iPad screen size. This resulted in devices without large screens such as
smaller mobile devices having visual glitches, where content wouldn’t
display. To find these glitches I used my Mums old phone which was an
iPhone SE. The iPhone SE has one of the smallest screen sizes on the
market so I assumed if content would display correctly on that device, then
it should on all.

Upon trying the app out on the iPhone SE I found the visual glitches to be
quite common due to my design being solely around an iPad prior to this
and most of my styling having fixed dimensions irrespective of devices.
The fixes to these glitches were the same in all cases and required me to
implement responsive syling. I addressed this by using responsive design
and wrapping components in views with flex styling, so they resize
dependent on device screen size. I also made use of max-height and max-
width styling for larger devices to prevent components being too large.
Below is the responsive styling of the home screen.

//Inline styling is deliberate to demonstrate responsive design
<View style = {{flex:7, alignItems:'center',justifyContent:'center'}}>
 <Pressable onPress ={()=> setDisplaySetup(true)} style
= {{borderWidth:2,borderRadius:9,width:240,alignItems:'center',marginBottom:10,flex:3,justifyContent:'center',maxHeight:120}
}>
 <Text style = {{fontSize:30}}>New Team</Text>
 </Pressable>
 <Pressable onPress ={()=> navigation.navigate('LoadSave')} style =
{{borderWidth:2,borderRadius:9,width:240,alignItems:'center',flex:3,justifyContent:'center',maxHeight:120}}>
 <Text style = {{fontSize:30}}>Load Team</Text>
 </Pressable>
 <View style= {{flex:1}}/>
</View>

Noob Proofing the App
With a stable product achieved the next step was noob proofing. Making the app easy to use was crucial for
widespread testing, as I couldn’t physically be there to guide users through the app. It was crucial I made the
app easy to use so users didn’t become frustrated and give up on the app during testing. Additionally, I also
aimed to make changes here to protect users from themselves. I.e. making it harder to accidentally delete
teams. First I improved the navigation system by adding a back button to both tab navigators. This was done
by adding a new component to the tab navigator that when pressed navigated to the prior page. This
provided a easy way for users to navigate backwards through the app, as previously users had to do a back
swipe motion which may not be clear to less tech-savvy users.

Home screen without responsive design.
Appears fine on large device

Home screen without responsive design on small
devices. Content overflows and overlaps.

44

The next change was adding an alert notification that confirmed whether
the users wished to delete a subsheet / team. This would prevent
accidental deletions. I used the alert component for this. The next change
of safeguarding users against themselves was adding a pop up that
reminds users to save their subsheets. There is not an auto save system
for subsheets, therefore it is nesscary to remind users to save before
exiting. I addressed this by making an alert appear the first time the user
reached the subsheet page, reminding them to save their subsheets.

Finally, I added safeguards to prevent the user from accidentally overriding their team and subsheets. Users
could create a team, add players to it and then assign positions to all their players. They could then
accidentally press the back button taking them to the team creation settings page as it was the screen prior
in the navigation stack. They would then press the button to create a new team assuming it would take them
back to their team. Instead of doing this the app would override the old team deleting their progress. To fix
this I changed the settings menu from a page into a
modal. Whilst this may seem unintuitive, it was done
to remove the setting pages from the navigation
stack as they are now modals. Now if a user swiped
backwards, it would take them back to the home
page as opposed to the team creation settings page
– as it’s removed from the navigation stack as a
modal - meaning they couldn’t accidentally override
their team. I also turned the subsheet settings page
into a modal as users could also override created
subsheets in a similar way.

Implementation of Additional Sports
Throughout the meetings with the various sports coordinators, I had collected information related to their
sports. This info contained basic formations for the sport, what the game pitch looked like and specific subs
rules. Luckily none of the sports had subbing rules that would require a redesign of the app.

There were two places in the app were content would have to be displayed differently dependent on sport.
The first was in what formations were to be displayed. When working alongside stakeholders for each sport
I got a basic list of formations to add. The implementation of these formations was a twostep process. The
first step was hardcoding these new formations into the formation data array. I explain above how this data
is turned into formations. I added a new value to each formation object in the form of formation_sport which
contained the sport that formations are used for. The second step was applying a filter to this array, so it only
displays formation data, for formations that have the same sport as the sport selected. I applied a similar
process to selectable positions that meant that only positions in the selected sport were able to be added to
a player.

//Example of one of many newly added formations for 9 aside football
{
 formationId:19,
 formationName: '3-2-3',
 formationSport: '9F',
 formationData: [
 [0,0,0,['Centre Foward','CF'],0,0,0],
 [0,['Left Wing','LW'],0,0,0,['Right Wing','RW'],0],
 [0,0,0,0,0,0,0],
 [0,0,['Left Midfield','LM'],0,['Right Midfield','RM'],0,0],
 [0,['Left Back','LB'],0,0,0,['Right Back','RB'],0],
 [0,0,0,['Centre Back','CB'],0,0,0],
 [0,0,0,['Goal Keeper','GK'],0,0,0]]
},
//Filter applied that removes all formations that aren’t for that sport
const formationData = formationDataAll.filter(item => item.formationSport == teamData.team_data[current_team_index].team_sport)

With this implemented functionally the code worked. A user could select their sport then chose a formation
specific to that sport. However, it didn’t look quite right visually because all formations were displayed in
front of a hockey pitch. To counter this I made new pitch components for all newly added sports using the
same view/flex method I used to make the original hockey pitch. With these new pitch designs added I

Pop up alerts that make users confirm whether they wish to
delete a team. This prevents them accidentally doing it.

Modal options pages are shown in yellow. As shown back arrows skip these pages preventing
overrides

45

implemented a switch statement that returns a different pitch design to render based on what the teams
sport is.

A final minor change I made was specific to junior netball. In junior netball there are only three positions and
Sara explained to me how a big part of junior netball is everyone rotating through positions. As this was the
case, I auto added all three of the netball positions to a netball player on their creation, thus saving setup
time.

Addition of Stakeholder Requested Features
Mid Game Subsheet Changes
Making changes to the subsheet during the game is a task I had viewed as quite difficult throughout the
projects development and therefore had put it off. However, due to many stakeholders stressing the need
of the feature due to the fact a subsheet could easily be ruined if a player becomes injured or fouled out mid
game, I decided to implement it. When implementing it I planned to reuse the subsheet creation page but
make the change that users couldn’t edit the subsheet in already played game time. Additionally, any
changes made would be reflected instantly on the game overview screen.

Before implementing this feature two steps of setup were required. First, I had to add the option to navigate
to the subsheet change page from the game overview page. I did this by creating a Match Overview tab
navigator and adding the game overview and the new subsheet change page to it. Second, I had to move
time related variables out of the game overview screen to the Match Overview tab navigator. This was done
to allow time variables to be inherited by both the subsheet change page and the game overview page, as
opposed to previously only existing in the game overview page. I also moved the code that handled the
changing of the clocks time to the Match Overview tab navigator.

Now with the time data being passed into the subsheet change page I had to transform it visually to display
what time has been played. To do this I planned to overlay a white area on already played time. To set this
up I made changes to the visual layer of the PositionSlider. I needed to consider two cases when whiting out
played time. The first was when the interval being displayed had already been played. In that case I overrode
the running of code that created the visual layer for that interval and instead added a single blob that spanned
the whole interval with name ‘Already Played’ and colour white. The second was when the interval was being
currently played. In this case I applied a modulus operation to determine how many minutes had been played
that interval then set the length of the already played blob to that. I then ran the code to create the visual
layer for the un-played minutes of that interval.

Setup formations for football

Rugby formation looking out of place
on hockey pitch

Setup formations for senior netball

const RenderedPitch = () =>
{
 switch(props.sport)
 {
 case '7H':
 return <HockeyPitch/>
 case '11H':
 return <HockeyPitch/>
 case 'N':
 return <NetballPitch/>
 case 'NS':
 return <NetballPitch/>
 case 'B':
 return <BasketballPitch/>
 case '11F':
 return <FootballPitch/>
 case '7F':
 return <FootballPitch/>
 case '9F':
 return <FootballPitch/>
 case 'R':
 return <RugbyPitch/>
 default:
 return <HockeyPitch/>
 }
}

46

//If interval already played – no other visual layer creation code runs after this
blobbed_data.push({name:'Already Played',length:intervalLengthProper,color:'white',overlap:[]})

//If current interval is being displayed. Visual layer creation code runs for the unplayed minutes after this
blobbed_data.push({name:'Already Played',length:minutesPlayed%intervalLengthProper,color:'white',overlap:[]})

With the frontend code working I next had to do make the backend of the code consistent with these
changes. The first was to prevent users allocating already played time to players. To address this, I added
checks to the drag end function that prevents already played minutes from being reallocated. The second
and far more complex change was handling the saving and updating of the subsheet data during the game.
To implement this, I first had to add a new prop to the PositionSlider component called gameActive. This
prop was used to distinguish whether the user was saving the subsheet midgame or not. It was necessary to
add this prop as I would have to handle the saving differently between when the user creates the subsheet
before the game and when they update it midgame. I used this prop to remove certain code from running
when the game was active and the subsheet was saved. The code I removed was navigation code that was
specific to the user moving between creating the subsheet and loading the game overview screen. I also
removed the calling of the save game data reducer as I didn’t want duplicate games to appear in game history
when users save the subsheet mid game. I also removed the updating of the current interval to 1 that was
specific to starting the game as it would reset the user’s game by going back to the first interval. With this
setup users could now make changes to their subsheet midgame, and those changes would be reflected on
the game overview page.

Analytical Gametime Break Down
In my discussion with J , he believed a greater degree of information was needed to be provided in
gametime distribution stats. He said inequality in gametime would arise from people missing games due to
them being sick, being away or being injured. Therefore, they would have a lower seasonal total gametime
which was not reflective of how much gametime they got in the games they attended. Based on this I decided
to add two new view types for gametime data alongside the already present total gametime.

The first was average gametime. The average gametime accounted for games that players missed, and
removed any games were a player played 0 minutes. This allowed for an understanding of gametime
distribution irrespective of games missed. To implement this, I created a list for each player that had their
time data for each game. I then filtered this list removing any games where 0 minutes were played before
finding the average of the list. These values are then
rendered for each player using a Flatlist.
//Loop through every players time data and average it out
for(let player = 0; player < timeData.length; player++)
{
 //Apply a filter to remove any games were the player didnt get any time
 timeData[player][1] = timeData[player][1].filter(time => time != 0)
 //Check if player has played no games and if so set time to 0. This is
to prevent division by 0 error
 if(timeData[player][1].length == 0)
 {
 timeData[player][1] = 0
 }
 else
 {
 //Average the players time of the games they have played
 timeData[player][1] = (timeData[player][1].reduce((a, b) => a + b,
0) / timeData[player][1].length).toFixed(1)
 }
}

The second was breakdown gametime view. The idea with this gametime view was to display the total time
played for each player, then show how many minutes they played in each game below that. To display this, I
made use of a new component I hadn’t used before called SectionList23. Functionally it was very similar to

23 https://reactnative.dev/docs/sectionlist

Average gametime allocation. Also shown is RNPickerSelect that
allows users to change view.

Interval displayed is current interval. Minutes played are whited out

Interval displayed has finished. Therefore, all minutes are whited out.

https://reactnative.dev/docs/sectionlist

47

FlatList which I had used throughout my project, but the difference SectionList provided was the ability to
display headers and subsections of data below these headers. This was exactly what I needed as I could set
the header to the player’s name and total time played, then the subsection data to their individual games
played. To set this up I had to make a couple of changes. The first was that when creating the data for the
SectionList I formatted it as an object for each player with three fields, namely id of the player, total minutes
played across the season and an array that had the minutes a player played for each game. With this data I
was able to render a header that had the players name and total minutes that player played across all games.
I set the section data equal to the array that stored the minutes played in each game for a player. This then
rendered below each player header all the games the player had played and how many minutes they got in
each game. Also note the use of the gameFromIndex function which retrieved the name of the team that the
game was against allowing it to be displayed. Finally, I implemented a new prop to TimeTab – the custom
component I made to display gametime - called isHeader that allowed conditional styling to be applied to
make the header large than the section data.

<SectionList
 sections={timeData}
 keyExtractor = {(item,index) => item+index}
 renderSectionHeader={({ section: { id,total } }) => (
 <TimeTab
 name = {nameFromIndex(id)}
 total = {total}
 isHeader = {true}/>)}
 renderItem = {({item})=>
 <TimeTab
 name = {gameFromIndex(item[0])}
 total = {item[1]}
 isHeader = {false}/>}
/>

//Function used to retrieve who the match was against to display
function gameFromIndex(i)
{
 return 'vs. ' + gameData[gameData.findIndex(game =>
game.game_id == i)].game_opponent
}

The final thing I did was implement conditional rendering of these different gametime views. I put a
RNPickerSelect at the top of the page that allows users to move between these views.

Setting up distribution of app for testing
Failed Expo Distribution method
Initially I planned to distribute my app through Expo Go using the publish method I made use of to show the
app to stakeholders offline. This publish method generates a QR code that could then be scanned for the app
to be emulated on the Expo Go app on a user’s device. However, this failed as I operated under the false
assumption that people would only need to install the Expo Go app then scan a QR code to access my app.
What I didn’t realise is that people would need to create their own Expo account and then I would have to
invite their account to my project in order for them to be able successfully scan the QR code. While I could
distribute the app this way I decided not to as I believe it would add unnecessary red tape and confusion to
the installation process that may push people away from using the app. Following this disappointment, I
carried out some research into other distribution services of beta apps. In the end I decided to use Testflight
for iOS as it was literally the only way to do widespread testing for iOS. For Android I decided to put my app
on the Android Play Console Beta Programme and distribute it that way.

Apple Account Setup / Testflight
Testflight is Apple’s official beta testing platform, and it serves as a
precursor to the App Store. As a developer I can upload my builds to
Testflight. The builds then go through a verification process to make sure
the app isn’t malware or shovelware before its accepted onto Testflight.
This verification process usually takes a day. From there users on Apple
devices can download the Testflight app then download my app through
it. The first step to setting this up was creating an Apple developer
account. This process was relatively straightforward apart from a hefty
developer fee I had to cop in order to set up my account.

Set up Appstore Connect account. This is the developer
homepage.

Breakdown time allocation. Shows total time then time in game v A,B,C,D

48

Google Play Console Account and Change to .apk Distribution Model
Google Play Console Beta Programme is essentially the Android version of
Testflight. The process to set it up is largely the same apart from the fact that
an identity verification is required. Google continually rejected my identity
verification even when I tried a range of documents such as passports,
driver’s licences and school ids. In the end I gave up on using this distribution
model and searched for a new method to distribute the app on Android.
What I decided on was instead building an apk version of my app then getting testers to sideload it onto their
device. To do this I would have to reconfigure the Android build option to change the build type from .aab to
.apk. A final disadvantage of side loading apk’s is that it sends virus warnings to users, on installation as the
app is not from the Play Store. This was not ideal as I feared it may scare away some users who mistakingly
view my app as malware. Although these disadvantages exist, I would have to put up with them as I couldn’t
distribute the app any other way on android.

Setting up Published Build
When it came to configuring and publishing builds of my app I made use of Expo Application Service (EAS).
EAS is a cloud service that compiles and signs Android/iOS apps with native code in the cloud. In layman
terms EAS takes my React Native code, compiles it into native code for each platform, packages it nicely and
handles all the signing and certification. This is often a complex process that most developers dread made
into a simple chain of console commands. This build process began by configuring my builds by entering eas
build:configure. This command ensured that my code was build ready and no errors would appear. After
this I ran eas build --platform all. This compiled my builds for both platforms. This command also
guided me through the process of signing the app and creating certificates for distribution.

Once this had finished my builds appeared on the Expo developer
cloud console. From there I could download the .apk versions of my
app and send it to Android devices or run a further command eas
submit -p ios. This command prompted me to sign into my Apple
Developer account then submitted my build to Testflight. Once EAS
had submitted my app onto Testflight I then had to log onto the
Apple developer console to submit my build for Testflight
verification. The Testflight verification process then takes roughly 18
hours before my app is returned for me to test.

On Wednesday 3rd August my first build was approved for
Testflight rollout. Initially this was a massive relief as it gave me a
lot of time to send out the app before the first round of testing on
Thursday 11th to Saturday 13th. This relief went to stress quickly as
when I went to test the app, the app would crash when selecting
a sport of your team. To make matters worse this bug couldn’t be
replicated on any test build. My time frame for fixing this was by tomorrow, as I was heading away over the
weekend, and I was required to have the app sent to sports coordinators by the Tuesday 9th and therefore
fixing it on Monday 8th would be too late. Therefore, I had one day to identify and isolate the bug then make
changes and republish the build. To make matters worse I found a StackExchange post that had the same
issue, but it had no comments on it.

Meeting with Nigel Pitts to Discuss Technical Issues
Due to how important it was that I correctly identified this bug and fixed it in a short time frame I organized
a meeting with a family friend – and software developer - Nigel Pitts to help me identify the bug. I organized
the meeting for the night of Wednesday 3rd allowing me the following day to implement a fix and then
resubmit it to Testflight. Nigel has worked in the tech industry his whole life and has experience with other
front end JS frameworks such a View therefore he would hopefully be of help.

Initially he was quite perplexed by the bug as I showed him how it crashed on a published build but not a test
build. First, we tried nuking all the project dependencies then rebuilding them – as when a build is compiled
by EAS all the dependencies are rebuilt - but that had no impact. This was confusing as it was not an issue

Google denying my id verification

First build accepted on Testflight for testing

First EAS builds appearing on the cloud console

49

with dependencies on the published build which we initially assumed. After a bit more thinking we both
concluded that the app only crashed when interacting with a component RNPickerSelect. Therefore, he
suggested I find a replacement Drop down select component and change it with RNPickerSelect component
and rebuild it and hope it works.
Resolution of Technical Issues
The component I found to replace it was SelectDropdown24. When selecting a replacement there were a few
options but I decided to pick this option as it was easiest to setup, and I was able to adapt all my old code to
it with only minor changes required. The RNPickerSelect took a list of items as a prop. Each item in this list
was an object with two fields value and label. An option in the RNPickerSelect was rendered for all objects. I
was able to reuse this list of options for the SelectDropDown by making the text to appear for each option
be the label field of its object. I also had to change the onValueChange prop to the – functionality identical
but just has a different name for this component - onSelect prop. The final additional bonus of this new
component was its added styling capability. It allowed styling to every part of the component in comparison
to the very limited styling allowed on RNPickerSelect. I swapped all occurrences of RNPickerSelect in my code
base with SelectDropdown then rebuilt the app before submitting it to Testflight. After another tense 18
hours wait the build was accepted and the crashes were resolved.
//Old RNPickerSelect code from earlier in devel
<RNPickerSelect
 onValueChange={(value) => {
 if (!playerPositions.includes(value) && value != null)
 {
 addPositionToPlayer([team_id,playerId, value])
 }
 }
 placeholder={{ label: 'Add positions', value: null }}
 style = {pickerSelectStyles}
 items = {positionSelectionData}
 useNativeAndroidPickerStyle={false}/>
//New picker select code
<SelectDropdown
 data={positionSelectionData}
 onSelect={(selectedItem) => {
 //Check if player isn’t already assigned that position and if so add that position
to the player
 if (!playerPositions.includes(selectedItem.value) && selectedItem.value != null)
 {
 addPositionToPlayer([team_id,playerId,selectedItem.value])
 }
 }}
 buttonTextAfterSelection={(selectedItem) => {
 //Handles rendering of the text on the button
 return selectedItem.label
 }}
 rowTextForSelection={(item) => {
 //Handles rendering of text for each item in list
 return item.label
 }}
 defaultButtonText={'Add positions'}
 buttonStyle = {styles.dropDownButton}
 buttonTextStyle={styles.dropDownText}
 rowTextStyle={styles.dropDownText}
 dropdownStyle={styles.dropDownStyle}/>

Social Basketball Testing and Meeting with M W
In the hecticness of this week I also met with M W . Social basketball is on every Friday night and
M W is responsible for running it at . B E had discussed with M about testing
the app out for social basketball. When I met with him, I gave him a tutorial of the app then discussed the
best method to approach testing. He suggested that a single iPad should be used throughout the night with
the app loaded onto it which he would pass between teams. This idea was a huge success as it made it very
easy for testers to pick up and use the app as they did not have to download anything.
Curation of Testing Information
The critical bugs were now fixed, and I had the app both verified on Testflight and available as a downloadable
apk. My next challenge was how I was going to send out information about the app and installation to testers.
From discussions earlier with A K we both decided the best way to handle the distribution of the app
was for me to collate a single page document that would have a brief explanation of the app, installation
information, a link to a feedback form and contact information. A K said he would then send this
document out to coaches for testing. Other stakeholders I talked to such as S and J agreed with
approach.

24 https://www.npmjs.com/package/react-native-select-dropdown#License

New Select drop down in use. Users have to scroll to see all
the options

https://www.npmjs.com/package/react-native-select-dropdown#License

50

I first wrote a brief description of the app that focused on why testers
should use it. I next made a short 90 second video running users through
using the app. This would serve as a basic tutorial to less tech savvy users
In this video I ran users through making their first team and subsheet. In
this video I included subtitles at the bottom to add increased clarity to
my actions. The final thing I did in this video was to include a tap gesture
that made a highlighted area wherever I tapped or dragged. This was to
show potentially confused users what buttons to press to progress. I
opted to include this video as opposed to written instructions on how to
use the app as I believed instructions are better communicated through
showing as opposed to telling.

In terms of installation information, I created a testing group on
Testflight that had a public link anyone could join. For the Android apk I
created a Google Drive and created a public link for that. I deliberately
decided to share the app on Google Drive as most Android phones come
with Google Drive preinstalled. Therefore, when they scanned the QR
code they’ll download it into their Google Drive where they can find it
easily. Whereas if it was a Dropbox link or other alternative file sharing
platform, they would download the .apk into their file system resulting
in the app being harder to find.

With links for both platforms, I created a QR code that would take users to the download link. I put in a QR
code as opposed to a web link, as a QR code forces users to take out their phone and scan the link on their
phone ensuring the link is opened on their phone. Whereas with a link people may click on it and open it on
their laptop and get confused when it doesn’t install. Initially I also had additional instructions to walk users
through the installation process but decided against it as a) the installation process was very simple and self-
explanatory – evident by my mum even being able to download it and b) I felt it would scare people away
from trying out the app if the installation instructions are long.

The final thing I put on the document was a survey form. The survey asked if the user had any technical issues
and asked what device they used, as technical issues may be specific to a device. I also asked a range of
questions such as how easy the app was to use, if they like the looked of the app and whether they would
use it again. I ended the survey with open-ended questions asking if they have any suggestions to add new
features in. I also emphasised the incentive I had added for completing the feedback form which was $100
gift card from Winnie Bagoes.

Last Second Bug testing / UX changes
With the distribution document setup, I passed it around my digitech class to see if people were able to install
my app based on those instructions. There were no issues with the installation process; everyone was able
to scan the code and download the app onto their phone. However, when people started using the app a few
critical bugs and UX issues were revealed. The bugs which were Android exclusive stopped people from
progressing through the app and UX issues resulted in users consistently getting confused and failing to make
a subsheet. As these issues were critical, I made a decision to delay sending the app out to coordinators by a
day and instead send it out on the 10th of August. This was not ideal as it meant the app would get to coaches
later than I wanted and give them less time to be aware of the app and set it up for their team for testing
prior to their game. However, this was a necessary decision to make if I wanted users to be able to use the
app.

The critical bug was that the text input would instantly close when
opened on Android devices resulting in users being unable to input
data such as players name. Like the described issue with
RNPickerSelect above this could not be recreated in a test
environment and was therefore very hard to debug. I found a chain

New text input being used to get a player’s name.

Produced single page testing document

51

of posts on StackExchange of people who also had this issue25. The solution provided was quite complex and
included playing around with dependencies version, so I just opted to install another Textinput package and
use that instead due to time constraints. The package I used was called react-native-element-textinput26. The
new Textinputs implementation into code is identical to the default Textinput component I was using prior,
and it was only diffrent in appearance. Therefore, all I had to do was uninstall the old Textinput package and
install the new and didn’t have to worry about changing / updating props.

The next and more problematic issues was with UX. Users consistently got stuck on the subsheet creation
page. What would happen is that when they created their team the app would prompt them to create their
first subsheet. This would lead them to creating their first subsheet before creating any players. As a
consequence, they would have no players to add to their subsheet and would become confused when
nothing happened. I came up with two solutions for this. The first was changing the navigation route through
the app. I decided to change the route to navigate users to the team management page before they created
a subsheet. This way the user added players into their team before creating their first subsheet. This meant
they wouldn’t become confused when creating this subsheet as they now had players to add to it.

The second and more general fix I implemented to users having a bad UX was a tutorial system. The plan for
this tutorial system was a pop-up that appears every time a user reaches a page for the first time. This popup
would explain to the user how to use the apps feature on that page. On a user’s subsequent visits to a page
the popup wouldn’t appear. To add this, I first added a new value to each team object called team_tutorial.
This was an array that contained Boolean values for whether each tutorial had been viewed. Each index in
the array corresponds to a page ie 0 – create subsheet, 1 – manage players & 2 – time overview etc. I next
added a modal to each of the pages were there was a tutorial prompt. The visible prop of the modal was set
to the respective Boolean value for whether that modal had been viewed. When the modal was dismissed
the Boolean value for that tutorial was set to false, meaning that it would not be displayed in the future.
 //New value that is added to the team object. It is an array that contains 5 true
values initially each corresponding to a tutorial. Once a tutorial is dismissed the
value is set to false and then it isn’t displayed again.
team_tutorial: [true,true,true,true,true]

//Modal that displays the tutorial a separate modal is used for each tutorial on
each page
<Modal
 {/*Modals visibility is determined by weather the team tutorial value for
that tutorial is true or false*/}
 visible={teamState.team_data[adjusted_team_index].team_tutorial[1]}>
 <View style={styles.centeredView}>
 <View style={styles.modalView}>
 <Text style{styles.modalText}>>Welcome to SUBlime – Team Overview</Text>
 <Text style = {{textAlign:'center'}}>{'A team would be nothing without
its player. On this page you can add players to your team by pressing the ‘+’
button. You can select as many positions as you like per player.\n\nOnce you have
added some players press the ‘Subsheets’ button to continue\n'}</Text>
 <View style = {{flexDirection:'row'}}>
 <Pressable
 style={[styles.button, styles.buttonClose]}
 {/*Calls the reducer that sets the value in team_tutorial at the
index of the tutorial to false*/}
 onPress={() => {updateTeamTutorial([team_id,1])}}>
 <Text style={styles.textStyle}>Close</Text>
 </Pressable>
 </View>
 </View>
 </View>
</Modal>

After I made these changes, I remade the tutorial video as the way users moved through the app had changed
and therefore it was necessary to update it to reflect this change and avoid confusion.

First Round of Testing
In the first testing round the app was sent out to the following groups for testing

Sport Total Testers
Social Basketball Setup for the whole Friday night and intended to be passed between 5 teams with the help of M

Westrupp
Canterbury Netball Sent out to 160 Junior Netball Coaches to test
Preparatory School Sent out to ~20 hockey teams, ~20 netball teams, ~10 basketball teams and ~10 football teams
J s Football teams Sent out to ~12 teams. These team ranged in skill level and age level.

25 https://github.com/facebook/react-native/issues/33164
26 https://www.npmjs.com/package/react-native-element-textinput

Modal produced from the code

https://github.com/facebook/react-native/issues/33164
https://www.npmjs.com/package/react-native-element-textinput

52

Changes Made Following Feedback from First Round of Testing
The feedback received largely varied. Some feedback was positive other negative and then some at times
aggressive. The feedback stemmed around a few things: first UX, second bugs and issues specific to devices
and third new features. Fortunately, no feedback was received surrounding crashes – which was a huge relief.
I had limited time to address bugs and make changes due to the two days turnaround from feedback to
resubmitting meaning I focused on the most pressing issues. First to do with UX.

Feedback: ‘after a while of adding players to the subsheet it is hard to see the time’

To fix this I added a minute timeline across the top of the subsheet. The timeline was created by generating
an array that contained a value for each minute in the interval. This array was then mapped to text
components where a number was rendered for each minute.

Array.from({length:interval_length},(interval_length*(current_interval-
1),(interval_length*current_interval))=>(interval_length*current_interval+1)).map((prop) => {
 return(
 <View key = {prop} style =
{{flex:1,justifyContent:'center',alignItems:'center',paddingTop:10,borderRadius:1,borderColor:'red'}}>
 <Text style = {{fontSize:20}}>{prop}</Text>
 </View>
)})

Feedback: ‘i had to rewatch the video a couple times to understand how to add players to the subsheet ’

This feedback showed people were struggling to figure out how to add players to the PositionSlider. To make
it more obvious I changed the numbers on each minute of a PositionSlider to a ‘+’. People intuitively press
plus making it likely that if they don’t understand what to do, they’ll press the ‘+’ hoping it will do something
then it’ll prompt them to fill out the PositonSlider and complete their subsheet. Also, with time across the
top of the subsheet it was no longer necessary to show minute values on the PositionSlider.

The next chunk of feedback was to do with device specific issues. I received constant feedback about the
PositionSlider that I found to be device specific.

Feedback: ‘when I try and give players more time on the subsheet, the drag freezes’

This feedback initially confused me as I couldn’t replicate this in my testing on iOS devices. However, I noted
a trend with this feedback; it only came from Android users. I then tested the app on my phone (I had
experienced this issue on my phone before but wrote it off to my phone being old and slow). What I noticed
was that the scroll of the FlatList was conflicting with the users drag to allocate more time to a player on a
PositionSlider. Mid-drag the user may accidentally slightly scroll up or down on the FlatList causing the drag
to cancel as the Flatlist scroll now takes priority. This would cause the drag to appear frozen, hence the
complaints. To address this, I would need to disable the scrollEnabled prop on the FlatList when the user was
dragging a player. By disabling the FlatList from scrolling this conflict no longer occurs. To check whether the
user was dragging, I checked if the moveDir state variable was set to null, as it was defined null when no drag
was taking place.

scrollEnabled={moveDir==null}

Other feedback specific to devices was that on phones
you could only view one position at a time on the
subsheet. I addressed this by making the PositionSliders
smaller by reducing their height style prop. I played
around with the height value for a bit until I reached a
height where it was small enough to allow multiple
positions to appear on smaller screens but large
enough for the touch not to be finnicky.

Finally, to do with new features. The main feature
requested was the ability to create your own
formations. The inability to do this led to passive
aggressive hatemail from one tester. I didn’t have time

Revised subsheet creation page based on three pieces of feedback received.
Added numbers across top, added pluses and made PositionSliders smaller.

53

to implement this before the next round of testing, so I added in some new default formations as a temporary
fix. For example, I added 3-5-2 and 4-5-1 to football as new defaults.

Second Round of Testing
After all these changes were made and the new build was approved onto TestFlight I updated my testing
documents, adding in a new QR code to install the new build. I then sent this updated document to the sports
coordinators who sent it out to their teams. The testing groups for this week were the same as last week
apart from a discontinuation of the social basketball testing. This was because the development time I would
lose by having to give the iPad I used for testing, to M over the weekend for social basketball, did not met
the benefit of the feedback from the five teams that would use it, when I already had a massive testing base.

Sport Total Testers
Canterbury Netball Sent out to 160 Junior Netball Coaches to test
Preparatory School Sent out to ~20 hockey teams, ~20 netball teams, ~10 basketball teams and ~10 football teams
Juans Football teams Sent out to ~12 teams. These team ranged in skill level and age level.

Meeting with Mainland Football
Earlier in development sent out emails to three major
sports governing bodies in Canterbury: Christchurch
Netball (who I had rolled out testing for), Canterbury
Basketball (who ghosted me for now) and finally
Mainland Football. Mainland Football is the regional
governing body of football in Canterbury, West Coast,
Nelson and Malbrough. They are responsible for the
overseeing and organization of 51 sports clubs. My
initial email to Mainland Football earnt a reply from
their CEO M F D , who applauded the
idea. He told me he had passed the idea onto his
technical team. After this email I heard no follow up for a month leading me to assume they were no longer
interested and therefore I contacted J C to discuss setting up the app for Football.

However, after sending out the testing information for the second round of testing, I received an email from
Mainland Football’s Community Development Officer A K asking to setup up a time for a Zoom
meeting about my app. In preparation for the meeting, I prepared a PowerPoint to screenshare with A
that had QR codes to install the app then various screenshots of it in use. I created this as I was unable to
show A the app physically on an iPad but still wanted him to try out the app.

The meeting with A began by him installing the app then us discussing the features. He really liked how
the app could be used to address an unequal gametime distribution. He stated how in his role as Community
Development Officer he commonly had to mediate complaints from parents about their kids not getting
enough gametime. He explained how it is often hard to resolve these complaints as there is very little
concrete evidence to support sides’ case. He believed that SUBlime would be useful in resolving these
complaints due to it providing records of gametime across a season. Adam did identify a minor design issue
on smaller screen phones (like the one he used) that when playing a game with 45-minute intervals – which
is standard in football – all of the buttons for each minute on the PositionSlider would become very small –
as 45 minutes were being displayed - making them hard to tap. A work around he suggested was
implementing subintervals that broke longer intervals into two parts when displaying them. Additionally
A noted that he would like to see the implementation of a system that allows users to create and
customize their own formations beyond the default options.

The final topic discussed was testing. The junior football season was basically over – with the last game being
this week and A stating it would be to late at this point to roll it out - and therefore I was unable to carry
out testing in the short term. However, they did offer me the opportunity to carry out testing at junior
football tournaments that were going to be carried out later in the year. This was a great opportunity as it
provided access to a large volume of testing in a short period of time. This testing would be done during the
term 3 holidays and therefore feedback wouldn’t come in until the latter half of the holidays. At this point it

Email received from Mainland Football

54

would be too late to make changes and implement feedback as I would have shifted my focus to report
writing and the publishing of SUBlime to app stores.

Changes made because of Second Round of Feedback
The feedback was generally more positive in the second round of testing, but minor complaints still existed.

Feedback: ‘I made the same feedback last week. It takes too long to add positions to players‘

The first pieces of feedback were to do with it taking a long period of time to assign positions to players. This
was a change I had to address due to the setting up of positions of players in a team being one of the first
things users did. If this took too long, it could potentially turn away future users. I implemented two changes
based on this feedback. The first was removing the need to press the plus on the PlayerTab to assign the
selected position to a player. Instead, I made it that when the user selected a position from the dropdown it
would assign it to the player instantly without them having to press the plus. This may have saved one – two
seconds per position assigned which may not seem like much but if a coach was assigning 30+ positions across
a team it could save upwards of a minute.

The second change was to add a ‘positionless’ option for when users created a team. If a team was
positionless, every player was assigned all the positions meaning that no time had to spent assigning positions
to players. This change was mostly targeted at junior teams were coaches are encouraged to play players at
a range of positions. Upon implementing this, I came to the realization that this change would cause crashes
with users who had used the app prior to this update. This was because these users would have setup teams
without a defined positionless value. What this meant was the app would crash when checking the
positionless value as it didn’t exist. To counteract this, I wrote a reducer that added the positionless field to
any old teams and set it to false.
//Position array is initally defined as empty. If positonless is true the aarray is filled with all positions then assigned to the player
let position = []
if(positionless == true) position = positionSelectionData.map(item=> item.value)
createPlayer([team_id,{ id: current_player_index, name: '', positions: position, color:, randomColor(), selectedPos: null}])

Feedback: ‘not a bug more an annoyance. When I open the keyboard it covers up the text
input and I cant see what I have written’

The next feedback was to do with a bug that when you went to enter the name of a
player the keyboard would cover up the Textinput making it impossible for you to see
the name that you were typing. This made it harder to know if you were spelling a
player’s name right. To counteract this, I used a KeyboardAvoidView 27 component that
I wrapped around the PlayerTabs. Consequently, the PlayerTabs shifted when a
keyboard was opened to not be covered.

Feedback: ‘app crashes on subsheet select page for no reason. Very annoying’

The bug was a crash caused when a user went onto the select subsheet page. The bug would only occur on
subsequent uses of the app and not when they used it the first time. I played around with this for a bit and
managed to replicate the crash by doing the same steps. I was very confused as to what may be causing this
crash so part by part, I removed components from the select subsheet page to identify what the issue could
be. In the end what I found was that the crash was being caused by the date the subsheet was saved at being
rendered in the SaveView. I did a bit of research online and found people with similar issues. What I
eventually concluded was that it was something to do with the way Redux Persist was storing my date time
values. This was because the date time values only caused crashes when being displayed after being saved.
This led me to look at how Redux Persist stored data and what I found was that Redux Persist serializes your
data to store it. Date time strings are non-serializable therefore when being deserialized no value returns.
This explains the crash as no date time values are returned when they are expected to be. My work around
for this was to store the date time in a serialization friendly format. This format was on object of fields of

27 https://github.com/APSL/react-native-keyboard-aware-scroll-view

Keyboard blocking user from seeing
currently typed name.

https://github.com/APSL/react-native-keyboard-aware-scroll-view

55

year, month, hour and minute. This data was able to be serialized then deserialized. I then had to go through
an extra step of returning this date time object back into string form to be displayed.

//The saved date is stored as an object then saved to the save_data ds
const current_date = new Date()
const savedDate = {year:current_date.getFullYear(),month:current_date.getMonth(),day: current_date.getDate(), hour:
current_date.getHours(),minute: current_date.getMinutes()}

//The format time function then turns this object into a date time and formats it
function format_time()
{
 const time_data = item.schedule_date
 const time = new Date(time_data.year,time_data.month,time_data.day,time_data.hour,time_data.minute)
 const options = { hour:'numeric',minute:'numeric', year: 'numeric', month: 'long', day: 'numeric' };
 return time.toLocaleDateString('en-NZ',options)
}

Feedback: ‘when I set up a subsheet for my football team the plus are too small to tap’

The next change was made based on feedback from users on small screen devices and stakeholder
consultation with Mainland Football. This change was the implementation of subintervals. The issue was that
some sports such as football have intervals as long as 45 minutes. Consequently, this resulted in two issues.
Firstly, on small screen devices each of the minute tiles became so small they were untappable due to 45 of
them being on screen for each position. The second issue was with lag, as discussed above the PositionSlider
still faced minor performance issues that became a lot worse when 45-minute tiles were rendered per
PositionSlider. This issue was pointed out in both feedback from J C and other football coaches
alongside A when he tried out the app in our meeting. My solution to this was to implement sub intervals
were any interval longer than 30 minutes would be split into sub interval a and subinterval b. Each half the
length of the original interval.

The first change I made was setting up the new interval selector to
allow users to pick sub intervals. Previously to make the interval
selector I had mapped a list of length of total intervals making a button
appear for each selectable interval. In this new interval selector I
planned to use similar approach with a list that contains all the
selectable intervals. To create this list, I first determined if the interval
was longer than 30 minutes and if it was therefore nesscary to have sub intervals. If sub intervals were
necessary, each interval longer than 30 minutes was broken into a lower section and upper section each
containing half of the minutes of the original interval. If the interval had an odd number of minutes the upper
section would take the extra minute. For example, an interval of 45 minutes is broken into sub intervals with
a lower section of 22 and upper section of 23. I then created an object for each of the sub intervals with fields
of tag (which was name of the interval to display a for lower section b for upper section), upperintervaloffset
(how large the upper interval was, the lower interval could then be determined by subtracting this off interval
length), intervalValue (which was the current interval that the sub interval was within) and lower (a boolean
value that was true for lower section and false for upper section). This list of objects was then mapped and
displayed with a selectable value like the last toggle interval.

//Create the interval selector data
let interval_selector = []
if(intervalW >= 30)
{
 //If its greater than 30 the interval is split into two parts. The lower section is a and upper section is b. We need to
find the offset for the upper section
 const upper_interval_offset = Math.ceil(intervalW / 2)
 //Now add the data for each interval adding in the lower and upper section
 for(let interval = 0; interval < intervals; interval ++)
 {
 interval_selector.push({intervalTag: (interval+1)+'a',upperIntervalOffset:
upper_interval_offset,intervalValue:interval+1,lower:true},{intervalTag: (interval+1)+'b',upperIntervalOffset:
upper_interval_offset,intervalValue:interval+1,lower:false})
 }
}
else
{
 //Otherwise just create an interval selector without sub tags
 for(let interval = 0; interval < intervals; interval ++)
 {
 interval_selector.push({intervalTag: (interval+1),upperIntervalOffset: intervalW,intervalValue:interval+1,lower:true})
 }
}

New position toggle with sub intervals selectable.

56

The next step was dealing with the constraints of sub intervals in the rendering and logic of the
PositionSliders. As these constraints had to be applied to a lot of features within the PositionSlider such as
what minutes to render, what minutes to allocate to a player based on user drag and what the drag direction
is, etc. I decided to create two variables for the lower and upper bounds to apply rendering and logic to.
These variables were setup as ternary such that they have different value if the upper or lower section is
being displayed. I then applied these variables to my code.

//Lower and upper bounds of minutes to display
const intervalLowerBound = (lower? intervalLength*(currentInterval-1):intervalLength*(currentInterval-1)+upperIntervalOffset)
const intervalUperBound = (lower? intervalLength*(currentInterval-1)+upperIntervalOffset:intervalLength*(currentInterval))

//Examples of these bounds being applied. First is to render minutes only between those bounds. Second is only applying logic
between bounds
if(i >= intervalLowerBound && i < intervalUperBound)
if(minutesPlayed >= intervalLowerBound && activeGameInterval == currentInterval)

Meeting with Canterbury Basketball
In the twilight of the projects development, I got a message from N G . N is the
junior events and competition officer for Canterbury Basketball. She reached out to me over text
showing interest in the app and wanting to make a time to discuss it. In our discussion I showed
N the app and she expressed how invaluable it would be to have such a tool in junior sports.
Unfortunately, due to the fact it was now the last week of term 3 there was no chance to test the
app out with junior basketball teams. However, N stated the potential to test the app out next
year.

Formation Selection
The final major feature I wanted to implement before shipping the app was the ability for users to
create their own formations. Currently in the app all the provided formations were hardcoded in,
and users had no ability to add or edit their own formations. As coaches make use of a wide range
of unique formations this was not ideal and could turn away potential users as the app doesn’t
have the formation they wish. This was reflected heavily in feedback with users asking a lot for the
ability to add their own formations and stakeholders such as J and Mainland Football who wanted this
feature added.

First, I had to overhaul the backend of how formations were stored. Previously they were hardcoded as a list
of objects for each formation and then these formation objects were rendered on the formation select
screen. As these formations could now be added, deleted, and edited I had to make this list editable. To do
this I added a new field for each team object called team_formations. This field would contain the list of
formations. I added the already existing formations to this list as default formations. After this I wrote new
reducers to allow the addition and deletion of formations from this list. I also had to add in a check when the
user loads a team to determine if the team had the team_formation field and if not add it in. This was
necessary to allow for backwards compatibility of team’s objects created prior to this change.

Next, I could move onto the front end. First, I added a new page to the team
overview tab navigator for formation management. On this page I reused the
formation selection component allowing all the formations to be displayed.
Next, I wanted to add the ability to create formations, to do this I added
Pressable with a plus icon. When pressed it would open a modal that would
allow users to create a formation. My plan for this formation creation page
would be to display a pitch. Users could tap anywhere on this pitch to add a
specific position at that point. Due to the limited time frame with setting this up
(It was now term 3 holidays) I attempted to make use of as much previously
existing code as possible to save development time. Therefore, I decided to
reuse the grid-based position rendering system I had used earlier to display
positions on formations. The change I would make would be that if no position
was assigned at a place on the field a SelectDropDown would be rendered instead allowing users to add a
position at that place. The first step in setting this up was creating a formation 2d array to pass into the
rendering code. I set this up as a state hook and set all values in this 2d array to -1. By being set to -1 it

Messages with Nicole

Example pitch. -1 in 2d array are the +
icon. Some positions have been added.

57

signifies no position was assigned at that place in the formation. I then applied conditional rendering to
render a SelectDropDown allowing a position to be selected if the position value was -1. Next, I added the
functionality of adding a position to the formation. When a user selected a position from the SelectDropDown
I changed the value in the 2d array to that associated position.

On the left-hand side of this formation creation modal, I added in Textinputs for the user to enter the name
of the formation. I also added a counter of the current positions in the formation by iterating though the 2d
array and incrementing a counter by 1 for all non -1 values. I deliberately added this so coaches don’t have
to constantly recount how many positions are in their formation. The final piece of functionality I added was
the ability to delete positions from a formation. To do this I wrapped all the formation icons in a Pressable
component. When pressed an alert would appear confirming whether the user wished to delete that
position. When pressed I would update the state hook and set that value to -1 therefore making the position
disappear and a plus appear in its place to add a new position.

With the ability to create a formation I now had to make it able
to be saved. I added a plus Pressable that when pressed would
create a new formation object with the formation 2d array inside
of it and a unique id. This would then be saved to
formation_data. When the formation was saved the modal
closed and the new formation appeared on the formation
management page.

The final consideration I made was whether to allow users to
create a formation if they didn’t have the required number of
positions for their sport in it ie 11 football, 15 rugby and 7 netball. I decided to not have this requirement in
order to increase accessibility and flexibility. For example, in another country they may play 6 aside football
as opposed to 7 aside football at a junior level. Currently the app doesn’t cater to 6 aside football locking
these users out of using the app. However, by having no restrictions on formation sizes a coach could create
a 6 aside formation thus allowing them to use the app. Therefore, by placing no restrictions on formation
size the accessibility of the app is massively increased.

Setting SUBlime up for a Postlaunch Environment
Post launch of the app, I will become disconnected from the
users of my app. Previously, all testers of the app had access to
my contact details and a feedback form in which they could
report any bugs or glitches they found. Once the app has
launched, I will hopefully have users from all over the world.
These users have no way to submit feedback forms or contact
me if they find any issues. Therefore, it was necessary for me to
set up a crash logging tool that records all crashes that occur of
the app, allowing me to address these crashes without being
able to contact users.

I looked at a range of tools that collect crash logs post launch such as Firebase, Datadog and Sentry. In the
end I decided on Sentry as it was free of charge and can be setup easily in the Expo development ecosystem.
The process of setting up Sentry was very boilerplate heavy. I first had to create a Sentry Account then
generate various API keys before linking the Sentry account to my code. Now when the app runs it is
connected to Sentry. Any crashes that occur while the app is in use is logged to my Sentry dashboard. A full
stack trace of the crash is provided allowing me to specifically identify what aspects of my code caused the
crash. Other data such as version model and operating system of the device is also noted. This would be
useful in attempting to address platform specific glitches. With this setup I now have confidence moving
beyond the launch of SUBlime that I will be able to address any bugs and glitches.

Complete formation creation page

Sentry Dashboard for SUBlime showing crash details of recent crashes.
Ironically, the first few crash logs were crashes caused by Sentry not being set
up correctly.

58

In addition to this I intend to remain close with the regional sports bodies I worked with – Canterbury
Basketball, Christchurch Netball and Mainland football – to collect qualitative feedback. All of these groups
were happy to support the use of the app into the future.

Submission of App to Google Play Store and Apple App Store
With the development of the app now complete. I moved onto the next task of releasing the app on the
Google Play store and Apple App Store. Although it would be easier to only pursue releasing the app on
Google Play Store due to its less strict regulations, I wanted to launch cross platform to increase accessibility.

Earlier in development I setup my Apple developer account but was consistently declined when attempting
to make a Google Play Console account. Luckily, when I tried to make an account again this time it worked
(this was presumably due to an 18-year-old age requirement to make an account that I didn’t meet earlier).
Next, I had to setup the app project on Google Play Console. To do this I had to setup a Google Cloud Services
account. Create a cloud project, generate a private key then link that to a created project on Google Play
Console28.

Next, I needed to gather the relevant information and details to create a listing for the app on the play store
and app store. For this I was required to have an app name, app icon, app feature graphic, app description,
a website for the app, screenshots of the app in use on different platforms and other pieces of minor
information. First, I setup the name of the app. Unfortunately, the app name SUBlime was taken already so I
changed the official app name to a variation of it: SUBlime Substitution Manager.

The next task was creating an app icon. Both Android29
and Apple30 provide very in-depth design
specifications for creating an app icon. I began by
reading these and took note of design conventions and
what sizes the icons would need to be. I also noted the
importance of having a good logo as it was the first
thing a prospective user saw therefore it must
effectively capture what the app does. To help me
come up with the design I organized a meeting with
A K to discuss what the key elements of the
logo should be. We both agreed on three key elements
for it. Firstly, some sort of sports iconography to indicate to users this is a sports app. For this we decided to
use a football as it’s the most universal sports symbol. Secondly, arrows that are symbolic of substitution or
swapping. Thirdly, the app name. I then outsourced the design of the logo to my younger sister who is a lot
a better at graphic design than me. After a while she returned to me with the design. I then sent the design
to A K for feedback, and he suggested I turn one of the footballs into a netball, so the app looks more
like a general sports substitution app as opposed to a football substitution app. After the changes were made,
I then added the new icon into the apps files and rebuilt the Android and iOS dependencies to reflect the
change in icon.

Next was the app description. For this I rewrote app blurbs I had used in the past when sending the app out
to stakeholders. I began the app description by explaining how and why SUBlime uniquely solves the issue of
unequal gametime and then bullet pointed all of the app’s features. Following this I created the app’s
website. On this website I had to include a privacy policy for the app and contact details. As I was limited for
time at this point in development, I decided against building a website from the ground up and instead made
a free Wix site31. On this site I made a home page with the app logo, a contact page with my contact details
and a contact form, and a page with a privacy policy. To make this privacy policy I made use of an online
privacy policy generator as a lawyer was not in the budget for this project. This generator asked me questions

28 https://pagepro.co/blog/publishing-expo-react-native-app-to-ios-and-android/
29 https://developer.android.com/distribute/google-play/resources/icon-design-specifications
30 https://developer.apple.com/design/human-interface-guidelines/foundations/app-icons/
31 https:// .wixsite.com/

Original App Icon

Revised App Icon

https://pagepro.co/blog/publishing-expo-react-native-app-to-ios-and-android/
https://developer.android.com/distribute/google-play/resources/icon-design-specifications

59

ranging from what age uses my app to how I store data and what data is stored32. It then generated a privacy
policy which I put on this webpage.

The final and by far the most painful step of creating the app
listing was creating screenshots of the app. Both Android and
Apple are very specific about their app screenshots and
require a range of screenshots from a range of device sizes.
To begin the design process, I looked at app listings on app
stores to determine what other apps did. I noted two
different groups of designs. The first was just straight
screenshots of the app and the second was a screenshot of
the app slightly zoomed out allowing text to be placed
around it. I preferred the second design as I it allowed more
information to be communicated about the app in a single image. Various Appstore screenshot generation
tools exist that convert app screenshots into screenshots to display on an app listing. However, I didn’t use
these tools for two reasons, firstly most of them cost money and secondly none of them had landscape
screenshot support and my app was landscape only. This meant I would have to create these app screenshots
myself. To create these app screenshots, I would first have to get screenshots of the app in use on the 7
different screen sizes that are required across the Android and Apple stores. I don’t own all these 7 different
devices therefore I had to make use of an emulator of the device on my laptop. As I was using an emulator
to get my screenshots it took a long period of time as my laptop is poorly speced and struggled to run the
emulator. Additionally, the drag functionality of the PositionSlider was hard to do on the track pad. I got four
screenshots on each device I emulated. These showed the subsheet creation page, the game overview page,
game time stats page and team managed page. I then edited the screenshots on GIMP to put them in front
of a background with text above explaining the feature. I played around with positioning, color and text size
for a bit before landing on screenshots I was happy with.

Alongside screenshots videos could be provided for the App
Store listing. I opted to not add videos as I would have to take
them on the emulator. Therefore, the videos would be laggy
which is not representative of the app. More minor tasks I
carried out was filling out various forms so the publishers could
determine the age rating of the app, the permissions used, and
whether data was stored correctly. Next, I had to decide
whether I wanted to charge for the app. Development costs up
to this point were $275 ($150 Apple developer account, $100
Winnie Bagoes voucher that I gave to testers and a $25 Google
Play Console account). As this cost was quite high I considered
charging 50 cents for the app and using the money from sales
to offset development costs. However, I decided against this as
I believed 50 cents – although small – was a large enough
barrier of entry to prevent users from trying out the app and
therefore missing out on the social benefit it provided.
Additionally, it seemed in bad faith to charge stakeholders and
testers to continue to using the app, considering their
generosity. After this I was able to submit the app to both the
Apple Appstore and Google Play Store. After a couple day wait
SUBlime Substitution Manager was released onto the Apple
App Store and a week later it was released onto the Google Play
Store.

32 https://www.privacy.org.nz/tools/privacy-statement-generator/

Launched emulator of a 7 inch android tablet

Exercise in checking boxes part of the app submission

SUBlimes app store listing

https://www.privacy.org.nz/tools/privacy-statement-generator/

60

Conclusion
Next steps
Although I am extremely content with the final outcome of this project, I did identify some next steps to
complete into the future.

• Create localizations of the app to other major languages such as French, Spanish and Chinese. To do
this I will make use of localization tools. This would allow the app to become more accessible as the
language barrier no longer exists.

• Add support for new sports. Currently planned is Futsal, Water Polo, Handball and Ultimate Frisbee.
This would require consultation with an experienced player or coach from this sport, then for me to
hard code in these new options.

• Further improving the tutorial system by adding a video tutorial system to guide users.
• Implement changes based on feedback received from the Mainland Football testing. This ranged

from suggestions for a setting page, to the ability to customize the colour for each player on the
subsheet.

Final Remarks
The development and success of SUBlime Substitution Manager has far exceeded any of my expectations.
Over a year I have gone from no experience in mobile app development – and very little with JavaScript - to
developing a cross platform app with React Native and Expo that has been published on both the Apple App
Store and Google Play Store globally. Currently on the date of publishing this report, the app sits at 167
downloads on the App Store 7 days after release (No download statistics exist for Google Play Store as the
app only released on it the day of publishing this report). The initial popularity of SUBlime Substitution
Manager has earnt it the place of the third app to come up when users search ‘Sports Substitution’ on the
App Store.

Whilst developing SUBlime Substitution Manager I worked alongside a wide base of sports’ stakeholders
within my school: A K , J C , B E , M J , M W and J K , as
well as major sporting bodies in the Canterbury region such as Christchurch Netball, Mainland Football and
Canterbury Basketball. I also worked alongside technologically minded stakeholders such as B L , N
P and P A – however my biggest regret of this project was not finding a technological stakeholder
who had prior experience with React Native. This was because at time I had questions specific to React Native
and I was unable to ask anyone them.

The functionality of SUBlime Substitution Manager has far
exceeded that of the minimum viable product. Users can create
their team, add players, give them positions, create custom
game formations, create subsheets, have a dynamic overview of
ongoing games and view the allocation of gametime across a
game and season. By providing this functionality I have
addressed the problem I laid out at the start of this report.
SUBlime Substitution Manager actively encourages equal
gametime to make young athletes feel valued and part of a
team. It will break down the negative association that some
players have between playing sport and sitting on the bench. It
will play a key role in diffusing parent – coach tensions by
providing a way for coaches to transparently display the
gametime of each player. Beyond this original goal, SUBlime
Substitution Manager will help develop the self-management
skills of young sports players as they can now actively manage
their own substitutions. I hope as a result of this, SUBlime
Substitution Manager will play a large part in increasing junior
retention in sport, allowing for better physical / mental health
and social outcomes for youth globally.

Photo sent in by testers of SUBlime in use

	SUBlime Substitution Manager
	NSN: 136219894
	Video: https://www.youtube.com/watch?v=HVfE5bsWX5A
	Download: Available on App Apple Store and Google Play Store

	Introduction
	Identified Problem
	Solution to Identified Problem

	Preproduction
	Project Timeline
	First Meeting with Alex Kelley
	Finalization of Features in Minimum Viable Product (MVP)
	Market Research on Similar Apps
	App One – SoccerSubstitution
	App Two – CoachAny
	App Three - TeamCoach
	Conclusions From Market Research

	Conceptual Design Process
	Wireframes
	Adobe XD designs
	Design Meeting with Alex Kelley

	Project Management Setup
	Trello
	GitHub
	Word Document Journal

	Development Tool Selection
	Mobile App v Website v PC Application
	Possible Development Frameworks
	Consultation with Tech Industry Veteran Bryn Lewis
	Evaluation of Possible Frameworks
	Visual Studio IDE
	Change in Development Framework

	Learning React Native
	Testing Methodology Throughout Development

	Development of Minimum Viable Product
	Setting up Project File
	PlayerTab Component
	Introduction to Basic React Native Paradigms
	Development of the PlayerTab Component

	PositionSlider Component
	First Iteration of the PositionSlider Component
	Second Iteration of the PositionSlider Component
	Linking the PlayerTab and PositionSlider Components
	Navigation Between Pages
	Scaling up the PlayerTab Component to make the Team Management Page
	Redux Explained
	Third Iteration of the PositionSlider Component
	The Component Layer of the PostionSlider
	The Visual Layer of the PositionSlider
	The Drag Layer of the PostionSlider
	Final Visual Touch-Ups to Position Slider

	Development of Formation Selection Screen
	Creating a Visual Game Pitch
	Implementation of Positional Grid System
	Connecting Formation Selection Page with the Rest of the App

	Development of the Game Overview Screen
	Implementing a Game Clock
	Connecting the Subsheet Creation Page with the Game Overview Page
	Substitution Countdown Component
	Active Game Situation

	Implementation of the Final Minor Features of the MVP
	Option Selection Screen
	Implementing Multiple Intervals on the Subsheet
	Save System and Selection of Persistent Database
	Loading the Saved Subsheets
	Bugs Caused by Asynchronous Logic

	Refinement Process
	First technical test
	Goal of first technical test
	Setting up App for 7 Aside hockey
	Results of Technical Test

	Firewall related issues at school
	Third meeting with Alex Kelley
	Contacting Regional Sports Governing Bodies
	Further Iteration on the PositionSlider Component
	Optimizations to Improve PositionSlider Performance
	Overlap Warning When Creating Subsheets
	Drag Buffer Zones
	Mirrored Subsheet Across Intervals

	Implementation of Teams
	Implementing Better Data Management Practises

	Reconfiguring Navigation System
	Problems with Old Navigation System
	Use of tab navigator / stack navigation combo

	Gametime Overview Page
	Calculating Gametime of Each Player
	Displaying Gametime Distribution Across a Season
	Game History

	Wide Spreading Testing and Expansion of Stakeholders
	Meeting with Sara Norton (Junior Netball Coordinator for Christchurch Netball)
	Fourth meeting with Alex Kelley
	Meeting with St Andrew’s College Heads of Sport
	Meeting with Juan Chang (Head of Football at St. Andrew’s)
	Meeting with Ben Eves (Head of Basketball St. Andrew’s)
	Meeting with Mike Johnston (Head of Rugby St Andrews)

	Preparations for widespread testing
	Bug Fixing
	Device Specific Glitches
	Noob Proofing the App
	Implementation of Additional Sports
	Addition of Stakeholder Requested Features
	Mid Game Subsheet Changes
	Analytical Gametime Break Down

	Setting up distribution of app for testing
	Failed Expo Distribution method
	Apple Account Setup / Testflight
	Google Play Console Account and Change to .apk Distribution Model

	Setting up Published Build
	Meeting with Nigel Pitts to Discuss Technical Issues
	Resolution of Technical Issues

	Social Basketball Testing and Meeting with Maia Westrupp
	Curation of Testing Information
	Last Second Bug testing / UX changes

	First Round of Testing
	Changes Made Following Feedback from First Round of Testing

	Second Round of Testing
	Meeting with Mainland Football
	Changes made because of Second Round of Feedback
	Meeting with Canterbury Basketball

	Formation Selection
	Setting SUBlime up for a Postlaunch Environment
	Submission of App to Google Play Store and Apple App Store
	Conclusion
	Next steps
	Final Remarks

