Student 1: Excellence

Electrochemical cell:

Reduction:	<mark>Cu²⁺ + 2e⁻ → Cu</mark>
Oxidation:	<mark>Zn → Zn²+ + 2e⁻</mark>
Overall:	<mark>Zn + Cu²⁺ → Zn²⁺ + Cu</mark>

 Cu^{2+} is reduced due to the fact that it gains 2 electrons in order to become Cu and reduction is the gain of electrons. The oxidation number for Cu decreases from +2 in Cu²⁺to 0 in Cu which shows that this is a reduction reaction.

Zn is oxidised due to the fact that it loses 2 electrons in order to become Zn^{2+} and oxidation is the loss of electrons. The oxidation number for Zn increases from 0 in Zn to +2 in Zn^{2+} which shows that this is an oxidation reaction.

At the right-hand electrode, the blue Cu²⁺ solution is reduced to form a brown Cu solid which is deposited on the brown Cu electrode causing it to gain mass. The blue solution in the beaker will lighten as Cu²⁺ is reduced.

At the left-hand electrode, the silver Zn solid is oxidised forming the colourless solution of Zn²⁺. This means that the silver/grey Zn electrode will decrease in mass. The solution in the beaker remains colourless.

$E^{\circ}_{cell} = E^{\circ}reduction - E^{\circ}oxidation$ =+0.34 - -0.76= 1.10 V

Since the E°_{cell} is positive this means that the reaction is spontaneous in the direction shown. Therefore, electrochemical potential energy is converted into electrical energy which is seen through the 1.10 V of electrical energy produced by the cell under standard conditions. E°_{cell} (Zn^{2+}/Zn) = -0.76V E°_{cell} (Cu^{2+}/Cu) = +0.34V

 $(Cu^{2+}/Cu) > (Zn^{2+}/Zn)$ Therefore Cu^{2+} is reduced because it has a more positive E°_{cell} and the right-hand electrode gains mass and Zn oxidised because it has a more negative E°_{cell} and the left-hand electrode losses mass. Also, because the Cu^{2+} is has a more positive E°_{cell} it means that it is the stronger oxidant and therefore the reactions will occur spontaneously. Electrolytic cell:

Since both the graphite electrodes are inert, then either Cu^{2+} or H_2O is reduced and SO_4^{2-} or H_2O is oxidised.

Since the right-hand electrode gains mass then Cu²⁺ must be reduced.

Since bubbles which relight a glowing splint are observed at the left-hand electrode, this indicates the presence of O_2 , meaning water must be oxidised. As well as this SO_4^{2-} is fully oxidised already.

Reduction: $Cu^{2+} + 2e^{-} \rightarrow Cu$ Oxidation: $2H_2O \rightarrow O^{2-} + H^+ + 4e^{-}$ Overall: $2Cu^{2+} + 2H_2O \rightarrow 2Cu + O^{2-} + H^+$

 Cu^{2+} is reduced because it gains 2 electrons in order to become Cu and reduction is the gain of electrons. The oxidation number for Cu decreases from +2 in Cu²⁺to 0 in Cu which also shows that this is a reduction reaction.

 $2H_2O$ is oxidised because it loses 4 electrons in order to become O_2 and oxidation is the loss of electrons. The oxidation number for O increases from -2 in H_2O to 0 in O_2 which shows that this is an oxidation reaction.

At the right-hand electrode, the blue Cu^{2+} solution is reduced to brown Cu solid which is deposited on the right-hand electrode (cathode) which therefore gain mass. The blue solution in the beaker will lighten as Cu^{2+} is reduced. At the left-hand electrode, colourless H₂O liquid

1

is oxidised to the colourless O₂ gas, which is released as bubbles at the anode and these bubbles can relight a glowing splint.

E°_{cell} = E°reduction – E°oxidation

=+0.34 - + 1.23

<mark>= -0.89 V</mark>

Since the E°_{cell} is negative, this means that the reaction is non-spontaneous in the direction shown. This means that in order for the reaction to occur, an input of electrical energy of at least 0.90 V is required from the power supply.

(2)

(3)

(Cu²⁺/Cu) < (O₂/H₂O) Cu²⁺ has a more negative E°_{cell} and H₂O is more positive. This means that as the reaction is shown it will not proceed because Cu²⁺ is a stronger reductant than H₂O. So, because Cu²⁺ is has a more negative E°_{cell} value it means that the reaction will not occur spontaneously.

Both the electrochemical and electrolytic cell reactions produce the brown Cu metal at the right-hand electrode through the reduction of Cu²⁺/Cu. However, the way this is achieved is different. The REDOX reaction in the electrochemical cell which forms Cu is a spontaneous reaction where electrochemical potential energy is converted into electrical energy. This reaction produces 1.10 V under standard conditions. In comparison, the REDOX reaction in the electrolytic cell where Cu is produced is a non-spontaneous reaction, and requires the input of electrical energy to force the reaction to occur. The electrolytic cell requires more than 0.89 V of energy to make the reaction proceed. Therefore, electrochemical cells convert electrochemical potential energy into electrical energy to produce Cu, whereas electrolytic cells require electrolytic cells require to produce Cu.