Student 5: Low Achieved	
Intended for teacher use only	

		· ·
Description of tests	Observations	Identification
Dipped damp blue litmus	The litmus turned red.	Indicates an acidic pH.
paper into the solution.		
In a test tube, we added a	There was some slight bubbling	Confirmed the pH of the
marble chip to a new	around the edges of the chip	solution is acidic.
sample of solution.		
In a test tube, we added a	No reaction was observed.	Indicates the solution
small squirt (<10mL) of		does not contain the
copper sulfate to a new		amine functional group.
sample of solution.		
In a test tube, we added a	No reaction was observed.	Indicates the solution is
small amount {<10ml) of		not a
acidified dichromate to a		1° or 2° alcohol or
new sample of solution.		aldehyde.
In a test tube, we added a	After swirling the test tube to	Indicates the solution is
small amount {<10ml) of	mix the bromine water and	an
bromine water to a new	solution together, we noticed	alkene.
sample of solution.	the solution lightened in colour,	
	from a slightly dark orange to a	
	lighter yellow shade.	

Description of tests	Observations	Identification	
Dipped damp blue litmus	The litmus paper stayed blue,	Indicates possibly either	
paper into the solution.	there was no colour change.	a neutral pH or a basic	
		pH.	
Dipped damp red litmus	The litmus paper stayed red	Confirmed our solution	
paper into the solution.	again there was no colour	has a neutral pH not	
	change.	basic.	
In a test tube, we added a	No reaction was observed.	Indicates that the	
small amount (<10mL) of		solution does not	1
copper sulfate to a new		contain the amine	`
sample of our solution.		functional group.	
In a new test tube we added	The solution turned a dark	Indicated the solution	
a small amount (<10mL) of	murky green.	may be a 1° or 2°	
acidified dichromate to a		alcohol or aldehyde.	
new sample of our solution.			
In a new test tube we added	No reaction was observed.	This indicated to us that	
a small amount {<10ml) of		the solution is a 1° or 2°	
benedict's solution to a new		alcohol, not an	
sample of our solution.		aldehyde.	
In a new test tube we added	No reaction was observed and	This indicates to us that	
a small amount (<10ml) of	the solution stayed orange.	our solution is an	
bromine water to a new		alkane.	
sample of our solution.			

Unknown liquid sample A

The compound I was able to identify for the unknown powder sample A, was Maleic acid.

Unknown liquid sample B

The compound I was able to identify for the unknown liquid sample B, was glycerol. It's chemical formula is $C_3H_8O_3$. It's shorthand formula, which I will refer to in this report, is

To summarise my observations, the solution has a neutral pH due to no colour change on the damp blue and red litmus papers. It does not contain an amine functional group as it did not turn a dark blue colour when I added copper sulfate. The solution did turn a dark murky green colour when I added acidified dichromate, which indicated that it may contain a 1° or 2° alcohol or aldehyde. But when I added benedict's solution, no colour change was observed, which confirmed the solution does contain a 1° or 2° alcohol. The solution is also an alkane due to no reaction being observed when I added bromine water.

Glycerol is what's known as a 'polyol' compound, containing three hydroxyl groups (where one oxygen atom is covalently bonded to one hydrogen atom). A polyol is an alcohol that contains more than one hydroxyl group, like what we see in glycerol.

It is also an alkane, specifically containing 3 carbon atoms to make it a propane.

Equations

Glycerol + acidified dichromate:

$$C_3H_8O_3 + H^+/Cr_2O_7^{2-} \rightarrow$$

The alcohol in glycerol has been oxidised by the oxidising agent, in this case the acidified dichromate, to form a ketone. A ketone is a functional group that contains a carbonyl group.

One of the H atoms in glycerol ($C_3H_8O_3$) is replaced with an oxygen atom, as a result of the oxidation, but is then lost due to the high number of bonds. That oxygen atom becomes double bonded to a carbon atom: forming a carbonyl group. The resulting product is also a carboxylic acid, where a carbon atom is double bonded to an oxygen atom.

Sources

Glycerol is a colourless, odourless, syrup-like substance that tastes sweet. It is not to be confused with glycerine, which is very similar but typically is the commercially-sold, purified version of glycerol; their uses are non interchangeable.

Glycerol can be extracted from the plant sources of soybeans or palm, or animal fat "tallow". It can also be produced as a co-product from fat or oil splitting. For example, triglycerides, which are found in human body fat, can be what's called 'saponified', which is a chemical reaction where hydroxides break bonds between the fatty acids and glycerol to form and separate the free fatty acids and glycerol- more basically, the triglycerides, or fats, are broken down chemically to separate and form two by products, fatty acids and glycerol.

Uses

Glycerol has many uses across a few industries.

In the food industry glycerol is favoured for it's sweetness and also it's ability to preserve, sweeten and thicken: it can be used to preserve plant leaves, can be used as a sweetener but without harmful tooth decay effects, to thicken food substances and is added to frosting to stop it from setting hard.

(2)