
Exemplar for internal assessment resource Digital Technologies for Achievement Standard 91896 

© NZQA 2023    

 
  

  

Exemplar for Internal Achievement Standard  

Digital Technologies Level 2 

  

This exemplar supports assessment against:  

Achievement Standard 91896 

Use advanced programming techniques to develop a computer program 
An annotated exemplar is an extract of student evidence, with a commentary, to explain key 
aspects of the standard. It assists teachers to make assessment judgements at the grade 
boundaries.  

  

New Zealand Qualifications Authority  

To support internal assessment    

  



Exemplar for internal assessment resource Digital Technologies for Achievement Standard 91896 

© NZQA 2023    

 

  Grade: Excellence  
1.  For Excellence, the student needs to use advanced programming techniques to 

develop a refined computer program. 
 
This involves: 

• ensuring that the program is a well-structured, logical response to the 
specified task 

• making the program flexible and robust  
• comprehensively testing and debugging the program.  

 
Full samples of student evidence are available in our online Learning Management 
System, Pūtake. 
  
The student has ensured that their program is a well-structured, logical response 
to the task. For example, they have used abstractions (where appropriate), 
functions to avoid repeated code, constants when a value never changes (as 
required), and variables of appropriate scope. 
 
The student has made the program flexible and robust. For example: 

• the code works for expected, unexpected and boundary values  
• it is easy to extend the code’s functionality (e.g. a function has been used 

to check the menu choices, so it would be easy to update the menu to add 
another level or path)   

• derived values have been used to iterate through a collection, instead of 
using hard coded values   

• a GUI has been used to limit invalid input, and/or other appropriate 
techniques (such as try/except) have been used to check for validity 

• derived values are returned properties, or have been calculated from other 
values. 

 
The student has comprehensively tested and debugged the program. For example, 
they have supplied test plans and/or annotated screenshots showing that all 
program components and the final program have been tested to ensure it works 
correctly for expected, boundary, unexpected and invalid cases. There is also 
evidence that they have used others to test their program throughout its 
development. The final program has been refined based upon testing.  

  
     



Exemplar for internal assessment resource Digital Technologies for Achievement Standard 91896 

© NZQA 2023    

  Grade: Merit  
2.  For Merit, the student needs to use advanced programming techniques to develop 

an informed computer program. 
 
This involves:  

• documenting the program with appropriate names and comments that 
describe code function and behaviour 

• following common conventions for the chosen programming language 
• testing and debugging the program effectively to ensure that it works on a 

sample of both expected cases and relevant boundary cases. 
 

Full samples of student evidence are available in our online Learning Management 
System, Pūtake. 
  

The student has documented the program with variable/module names and 
comments that describe code function and behaviour. Descriptive variable/module 
names have been used, e.g. the menu module has been called ‘display_menu’, 
and the list holding the values of the order, ‘current order list’.  
 
The code has comments at key points describing code function and behaviour, 
e.g. #module’ for the main ordering sequence, which can be called to start or to 
cancel the order ‘(restart). 
 
The student has followed common conventions for their chosen programming 
language. For example, they have:  

• used all lower-case variable names for code written in Python, and function 
definitions are placed before or after the main function 

• followed layout conventions (e.g. whitespace between definitions), and 
indentation and/or bracketing conventions are also present  

• used an automated tool to check that their code follows common 
conventions. 

 
The student has tested and debugged the program effectively, ensuring that it 
works on a sample of both expected and relevant boundary cases, as required. 
They have provided evidence of testing relevant components (and/or the final 
program) to confirm that it works correctly on a range of boundary cases, e.g. for 
lives at 0 and 1, or menu selection at the upper and lower bounds of the choices. 
The testing methodology is effective within the context of the problem. 

  
  
  



Exemplar for internal assessment resource Digital Technologies for Achievement Standard 91896 

© NZQA 2023    

   
  Grade: Achieved  
3.  For Achieved, the student needs to use advanced programming techniques to 

develop a computer program.  
 
This involves: 

• writing code for a program that performs a specified task  
• using advanced techniques in a suitable programming language 
• setting out the program code clearly and documenting the program with 

comments 
• testing and debugging the program to ensure that it works on a sample of 

expected cases. 
 
Full samples of student evidence are available in our online Learning Management 
System, Pūtake. 
  
The student has written code for a program that performs a specified task.  
For example, this program meets all specified task requirements for a pizza ordering 
system. It allows users to enter typical data, and it outputs expected results. 
 
The student has used advanced techniques in a suitable programming language. 
For a pizza ordering program, this could include variables storing two different data 
types (e.g. string for name and boolean for delivery), an iteration control structure 
(e.g. a loop that repeats the entry prompt), selection (e.g. condition based on pick-up 
or delivery), input from the user and output of the order, and two or more advanced 
techniques from Explanatory Note 5, such as: 

• functions/procedures/methods for the ordering process and a menu display 
using parameters 

• event handling code to respond to events from the graphical user interface 
(GUI), and/or 

• a collection that is updated with the order. 
 

The student has set out the program code clearly, and documented the program with 
some comments. 
 
The student has tested and debugged the program to ensure that it works on a 
sample of expected cases. For example, they documented their test cases using a 
screen capture and voiceover, explaining what tests were passed and what changes 
they needed to make.  The program functions on expected input, but may crash on 
boundary or invalid input. 

  


