National Certificate of Educational Achievement taumata mātauranga $\bar{A}-M O T U$ KUA TaEA

Exemplar for Internal Achievement Standard Mathematics and Statistics Level 2

This exemplar supports assessment against:
Achievement Standard 91258
Apply sequences and series in solving problems

> An annotated exemplar is an extract of student evidence, with a commentary, to explain key aspects of the standard. It assists teachers to make assessment judgements at the grade boundaries.

New Zealand Qualifications Authority
To support internal assessment

	Grade Boundary: Low Excellence
1.	For Excellence, the student needs to apply sequences and series, using extended abstract thinking, in solving problems.
This involves one or more of: devising a strategy to investigate a situation, identifying relevant concepts in context, developing a chain of logical reasoning, or proof, or forming a generalisation, and also using correct mathematical statements, or communicating mathematical insight.	
This student's evidence is in response to the TKI task 'Property Development'.	
The student has devised a strategy to investigate and find the total weekly rent for the buildings with 15 floors in both areas (1) (2). The student has found a solution for the number of floors required in each building in order for the income difference to be less than \$1000 (3). For a more secure Excellence, the student needs to improve the communication by clearly indicating what it is they are calculating and the decisions that they made when selecting and using formulae. The student should also use correct mathematical statements throughout the response.	

Business Area Highrise (BAH)		Geometric		
-window	v \$120 per window	$120 \times 24=\$ 2880$	$r=1.05$	
-inside	\$102 per window	$102 \times 8=\$ 816$		
Industrial Area (IAH)		Artihmetic		
-window	v \$103 per window	$103 \times 28=\$ 2884$	$3 \times 28=84$	$d=84$
-inside	\$65 per window	$65 \times 16=\$ 1040$		
BAH 2	$\frac{2880\left(1-1.05^{n}\right)}{(1-1.05)}+816 n$	$\mathrm{n}=15=\$ 74386.26$ (2 decimal places)		
$\text { IAH } \quad \frac{n}{2}(2 \times 2884+(n-1) \times 84)+(1040 \times n) \mathrm{n}=15=\$ 67680$				

Found the sums of each building weekly rent if they both had 15 floors. They are quite close in number but BAH is geometric so its size will get bigger quicker than IAH which is arithmetic.

BAH $n=20=111549.95$ (2 decimal places)
$\mathrm{n}=22=128847$ (6sf)
$\mathrm{n}=23=138087.8$ (1 decimal place)
IAH $n=30=154260$
$\mathrm{n}=25=123300$
$\mathrm{n}=26=129324$

IAH = $26=\$ 129324$
BAH $=22=\$ 128847$

Because IAH has a much bigger floor level amount range and through guess and check I have discovered it can be a much higher number.
So I took the biggest floor amount (BAH) and got the sum and found could IAH not match it by less than 1000. So I dropped BAH by one floor and found I could match it.

I suggest IAH should have 26 floors and BAH should have 22 floors. It is the most money that can be made weekly with them less than 1000 apart.

	Grade Boundary: High Merit
2.	For Merit, the student needs to apply sequences and series, using relational thinking, in solving problems. This involves one or more of: selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, forming and using a model, and also relating findings to a context or communicating thinking using appropriate mathematical statements. This student's evidence is in response to the TKI task 'Property Development'. The student has formed and used a model to find the total weekly rent for an industrial area building (1) and a business area building (2). The student has used appropriate mathematical statements. To reach Excellence, the student could improve the communication. This could be done by explaining why floors 17 and 19 were chosen, and by confirming that the difference is less than \$1000.

Business area high rise

At least 15 floors high below 23 floors high
$24 \times 120=\$ 2880=$ ground floor outside window
$8 \times 102=\$ 816=$ inside office on any floor
$t_{n}=\left(2880 \times 1.05^{n-1}\right)+816=$ total floor cost for any floor
$s_{n}=\frac{2880\left(1-1.05^{n}\right)}{(1-1.05)}+816 \times n=$ total weekly rent for business building .
$S_{15}=\$ 74386.26 \quad S_{17}=\$ 88292.26$

Developer should build business building 17 floors high.

Industrial area high rise

At least 15 floors high below 32 floors high
$28 \times 103=2884=$ ground floor outside window
$16 \times 65=1040$ = inside offices on any floor
\$84 added each floor on outside windows
$a=3924 \quad d=84$
$t_{n}=3924+(n-1) 84=$ total floor cost for any floor
$s_{n}=\frac{n}{2}(2 \times 3924+(n-1) \times 84)=$ total cost of building per week
$s_{15}=\$ 67680 \quad s_{19}=\$ 88920$

Developer should build the industrial building 19 floors high

3.	Grade Boundary: Low Merit
For Merit, the student needs to apply sequences and series, using relational thinking, in solving problems.	
This involves one or more of: selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, forming and using a model, and also relating findings to a context or communicating thinking using appropriate mathematical statements.	
This student's evidence is in response to the TKI task 'Property Development'.	
The student has formed and used models to investigate the total weekly rent for the business area (1) and industrial area buildings (2). For a more secure Merit, the student needs to use eight inside offices rather than six, and for the solution, the difference in rents needs to be less than \$1000. The student should also use appropriate mathematical statements throughout the response.	

1) Business area high rise building:

Floor 10:
$t_{10}=120 \times 1.05^{9}=186.16=$ outside office
$186.12 \times 24=4467.84 \quad 102 \times 8=816$ total $\$ 5283.84$
Industrial area high rise building

Floor 10:
$t_{10}=103+9 \times 3=130 \Rightarrow$ outside office
$130 \times 28=364065 \times 16=1040 \quad$ total $\$ 4680$
2)

Building 1
$s_{15}=\frac{120\left(1-1.05^{15}\right)}{-0.05}=2589.43 \times 24=\$ 62146.32$
$61246.32+15 \times 102 \times 6=\$ 71326.32$
$s_{23}=\frac{120\left(1-1.05^{23}\right)}{-0.05}=4971.66 \times 24=\$ 119319.84$
$119319.84+23 \times 102 \times 6=\$ 133395.84$

The total rent for the building 1 is between $\$ 71326.32$ and $\$ 133395.84$
$s_{22}=\frac{120\left(1-1.05^{22}\right)}{-0.05}=4620.63 \times 24=\$ 110895.12$
$110895.12+22 \times 102 \times 6=\$ 124359.12$

Building 2
$s_{15}=7.5(206+14 \times 3)=1860 \times 28=\$ 52080$
$52080+15 \times 65 \times 16=67680$
$s_{32}=16(206+31 \times 3)=4784 \times 28=\$ 133952$
$133952+32 \times 65 \times 16=\$ 167232$

The total weekly rent for building 2 is between $\$ 67680$ and $\$ 167232$
$167232-133395=33837$
$s_{25}=12.5(206+24 \times 3)=3475 \times 28=\$ 97300$
$97300+25 \times 65 \times 16=123300$
$s_{27}=13.5(206+26 \times 3)=3834 \times 28=\$ 107352$
$107352+27 \times 65 \times 16=135432$
$s_{26}=13(206+25 \times 3)=3653 \times 28=\$ 102284$
$102284+26 \times 65 \times 16=\$ 129324$

The developed should build 22 floors for building 1 and 25 floors for building 2 .

	Grade Boundary: High Achieved
4.	For Achieved, the student needs to apply sequences and series in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations. This student's evidence is in response to the TKI task 'Property Development'. The student has selected and used a partial sum of an arithmetic sequence in correctly finding the total weekly rent for a 15 floor building in the industrial area (1), and a partial sum of a geometric sequence in finding the total weekly rent for a 15 floor building in the business area (2). To reach Merit, the student needs to start to investigate different building sizes. The student would also need to more clearly communicate what they are calculating.

Weekly rent for industrial - 15 floors
Inside offices $\quad 16 \times 65=\$ 1040$ per floor $=\$ 15600$ inside offices for entire building

Outside offices first floor $=28 \times 103=\$ 2884$

Entire building (outside offices)
$s_{n}=\frac{n}{2}(2 a+(n-1) d) \times 28$
$=7.5(206+14 \times 3) \times 28$
$=\$ 52080$ a week outside offices

Entire building a week $=\$ 67680$ (15 floors)

Weekly rent for a city centre building 15 floors

Inside offices $8 \times 102=\$ 816$ per floor
$816 \times 15=\$ 12240$ entire building (inside)
Outside offices first floor $=24 \times 120=2880$ per week

All outside offices in the building
$S_{n}=\left(\frac{a\left(1-r^{n}\right)}{(1-r)}\right) \times 24=\left(\frac{120\left(1-1.05^{15}\right)}{(1-1.05)}\right) \times 24 \quad=\$ 62146.32$

Entire building per week 15 floors $=\$ 74386$

Two 15 floor buildings

Industrial = \$67680 a week
City centre $=\$ 74386$ per week

Add one floor to industrial
$t_{n}=a+(n-1) d=103+15 \times 3=148$
$67680+148 \times 28+15600=\$ 87424$ per week for 16 floor building rent (indus)

Weekly floor rent for any floor in industrial
$(103+($ floor -1$) \times 3) \times 28+1040$
Weekly floor rent for any floor in city centre

$$
\left(120 \times 1.05^{\text {floor }-1}\right) \times 24+816
$$

	Grade Boundary: Low Achieved
5.	For Achieved, the student needs to apply sequences and series in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations. This student's evidence is in response to the TKI task 'Property Development'. The student has selected and used the general term of a geometric sequence in correctly finding the total rent of the 15th and 23rd floor of the business area high rise building (1), and a partial sum of a geometric sequence in finding the total rent for a 15 floor building in the business area (2). For a more secure Achieved, the student, when finding the total floor cost for the industrial area, could use the correct common difference in calculations that involve finding the cost of the outside offices.

BA High rise

Ground floor $=(102 \times 8)+(120 \times 24)=\$ 3696$
$(120 \times 24)=a$

Floor $15=t_{n}=a r^{n-1}=2880 \times 1.05^{14}=\$ 5702.20$
Total $=\$ 6518.2$

Floor $23=t_{n}=a r^{n-1}=2880 \times 1.05^{22}=\$ 8424.75$
Total $=\$ 9240.75$

Total of $15=s_{n}=\frac{a\left(r-1^{n}\right)}{(r-1)}=\$ 62146.26+(102 \times 8) \times 15=\$ 74386.26$

IA High rise

Ground floor $=(65 \times 16)+(103 \times 28)=\$ 3924$
$(103 \times 28)=a$
Floor $15=t_{n}=a+(n-1) d=2884(15-1) 3=\$ 2926$
Total $=\$ 3966$
Floor $32=t_{n}=a+(n-1) d=2884(32-1) 3=\$ 2977$
Total $=\$ 4017$
Total of $15=s_{n}=\frac{n}{2}(2 a+(n-1) d)=\frac{15}{2}(5768+(14 \times 3))=\$ 43575+((65 \times 16) 15)=\$ 59175$
Total of $20=s_{n}=\frac{n}{2}(2 a+(n-1) d)=\frac{20}{2}(5768+(19 \times 3))+((65 \times 16) 15)=\$ 73850$

	Grade Boundary: High Not Achieved
6.	For Achieved, the student needs to apply sequences and series in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations. This student's evidence is in response to the TKI task 'Property Development'. The student has selected and used a partial sum of an arithmetic sequence in correctly finding the total costs of renting one outside office for 15 floors and for 32 floors in the industrial area high rise building (1). To reach Achieved, the student needs to select and use one further method, for example by finding the sum of all the offices on the floor, or by correctly using the 5% extra for a business area office. The student should also give their answers in context, for example, by including the \$ sign when finding cost.

Business area high rise
If this building will be 15 floors and each office on a higher floor is 5% similar or more $6 \$$ so
$t_{15}=120+(15-1) \times 6=204$ outside + inside $=2430+(102 \times 15)=3960$
$s_{15}=\frac{15}{2}(2 \times 120+(15-1) \times 6)=2430$

If the building will be 23 floors high
$t_{23}=120+(23-1) \times 6=252$
$s_{23}=\frac{23}{2}(2 \times 120+(23-1) \times 6)=4278$
Outside + inside $=4278+(102 \times 15)=5808$

Industrial area high rise
If the building will be 15 floors high:
$t_{15}=103+(15-1) \times 3=145$
$s_{15}=\frac{15}{2}(2 \times 103+(15-1) \times 3)=1860$
Total: $1860+(65 \times 15)=2835$
If the building will be 32 floors high
$t_{32}=103+(32-1) \times 3=196$
$s_{32}=\frac{32}{2}(2 \times 103+(32-1) \times 3)=4784$
Total: $4784+(65 \times 32)=6864$

