

Length of pipeline $=$
$a^{2}=40^{2}+50^{2}-2 \times 40 \times 50 \times \cos 60$
$a^{2}=2100$
$a=45.83 m$
area $\triangle \mathrm{ACD}=\frac{1}{2} b c \sin A=\frac{1}{2} \times 40 \times 50 \times \sin 60=866.03 \mathrm{~m}^{2}(3 \mathrm{sf})$
$\angle A B C=\frac{36^{2}+55^{2}-45.83^{2}}{2 \times 36 \times 55}=0.56$
$\cos ^{-1} 0.56=55.9^{\circ}=\angle A B C$
Area $\triangle \mathrm{ABC}=\frac{1}{2} b c \sin A=\frac{1}{2} \times 36 \times 55 \times \sin 55.9=819.78 m^{2}$
Total area is $819.78+866.03=1685.81 \mathrm{~m}^{2}$
$1685.81 \div 4=421.4$ so it can be divided into 4 sections of at least $400 \mathrm{~m}^{2}$.
$\triangle A C D$ half the base of $C D$ to get two triangles with half the area of ACD.
Subsection $1=\frac{1}{2} \times 25 \times 40 \times \sin 60$ which is $433.015 \mathrm{~m}^{2}$. This means
Subsection 2 is also $433.015 \mathrm{~m}^{2}$ because $866.03-433.015=433.015$
Subsection $3=\frac{1}{2} \times 31 \times 32 \times \sin 55.9$ which is $410.72 \mathrm{~m}^{2}$ which means
Subsection 4 is $819.78-410.72=409.06 \mathrm{~m}^{2}$.
There is 4 subsections with at least $400 \mathrm{~m}^{2}$ in each one and they are not all triangles.

