

equation for comet

centre $=(320,0) \quad$ focus $=(0,0)$ focal length $=320$
$-y^{2}=4 a(x-320)$

$$
4 a=4 \times 320=1280
$$

$y^{2}=-1280(x-320)$
Position of asteroid when it crosses the orbit of the comet is when $x=0$

$$
\begin{aligned}
& y^{2}=-1280(x-320)=-1280(0-320)=409600 \\
& y=640
\end{aligned}
$$

Asteroid is 640 million km from the sun when it crosses the orbit of the comet.

equation of earth

foci $(0,0)$ and $(-7,0)$
x-intercepts $(146,0)$ and (-153,0)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$a=149.9 \quad b=? \quad c=3.5$
$b=\sqrt{\left(a^{2}-c^{2}\right.}=\sqrt{149.5^{2}-3.5^{2}}=149.46$
$\frac{(x+3.5)^{2}}{149^{2}}+\frac{y^{2}}{149.46^{2}}=1$
position of asteroid when it crosses the orbit of the earth when $\mathrm{x}=0$

$$
\frac{(0+3.5)^{2}}{149^{2}}+\frac{y^{2}}{149.46^{2}}=1 \quad 5.518 \times 10^{-4}+\frac{y^{2}}{149.46^{2}}=1
$$

$$
\frac{y^{2}}{149.46^{2}}=0.999 \quad y^{2}=22325.97
$$

$y=149.41876=149$ million km
When the asteroid crosses the earth's orbit it is 149 million km from the sun.

