Earth

$F_{1}=(0,0) \quad F_{2}=\left(-7 \times 10^{6}, 0\right) \quad$ The foci are at $(c, 0)$ and $(-c, 0)$
$2 c=7 \times 10^{6} \quad c=3.5 \times 10^{6} \mathrm{~km}$
$c=$ distance from centre to focus, $a=$ distance from centre to vertex/x-intercept
$c+146 \times 10^{6}=a=3.5 \times 10^{6}+146 \times 10^{6}=149.5 \times 10^{6} \mathrm{~km}(3 \mathrm{sf})$
$b^{2}=a^{2}-c^{2}$
$b=\sqrt{\left(a^{2}-c^{2}\right)}=\sqrt{\left[\left(149.5 \times 10^{6}\right)^{2}-\left(3.5 \times 10^{6}\right)^{2}\right]}=149 \times 10^{6} \mathrm{~km}(3 \mathrm{sf})$
The centre is $3.5 \times 10^{6} \mathrm{~km}$ from F_{1} so the centre is at $\left(-3.5 \times 10^{6}, 0\right)$
$\frac{\left(x+3.5 \times 10^{6}\right)^{2}}{\left(149.5 \times 10^{6}\right)^{2}}+\frac{y^{2}}{\left(149 \times 10^{6}\right)^{2}}=1$
Intercept $=(0, y)$ so y intercept is when $x=0$

$$
\mathrm{y}=149.5 \times 10^{6} \mathrm{~km}
$$

Mars

$2 a$ is total horizontal distance, a is distance from centre to vertex/x intercept c is distance from centre to focus
$2 a=460 \times 10^{6} \quad a=230 \times 10^{6}$
$250 \times 10^{6}=a+c \quad c=250 \times 10^{6}-230 \times 10^{6}=20 \times 10^{6}$
$b=\sqrt{\left(a^{2}-c^{2}\right)}=229 \times 10^{6} \mathrm{~km}(3 s f)$
Centre must be $20 \times 10^{6} \mathrm{~km}$ from F_{1} which means centre is at $\left(-20 \times 10^{6}, 0\right)$
Equation: $\frac{\left(x+20 \times 10^{6}\right)^{2}}{\left(230 \times 10^{6}\right)^{2}}+\frac{y^{2}}{\left(229 \times 10^{6}\right)^{2}}=1$
Asteroid crosses path of Mars at point $(0, y)$ ie when $x=0$ and $y=$?
When $\mathrm{x}=0 \mathrm{y}=228 \times 10^{6} \mathrm{~km}(3 s f)$

Comet

$2 a=640 \times 10^{6} \quad a=320 \times 10^{6}$
Shift may be 320×10^{6} to the right? In which case
$y^{2}=-1280 \times 10^{6}\left(x-320 \times 10^{6}\right)$
$y^{2}=-1280 \times 10^{6}\left(0-320 \times 10^{6}\right)$
$y=\sqrt{4.096 \times 10^{17}}=640000000 \mathrm{~km}$

