$x=$ no of grams of Xena
$y=$ no of grams of Yum
z = no of grams of Zany
The amount of vitamins of each type of food can be represented by the equations
$2 x+4 y+5 z=1000 \quad$ (Vit A)
$3 x+7 y+10 z=1600($ Vit C)
$5 x+9 y+14 z=2400$ (Vit E)
Solving these equations gives $x=300, y=100, z=0$
So to meet the daily requirement Roger should feed them 300 grams of Xena, 100 grams of Yum and no Zany.

If the amount of Vitamin A in Zany changes to 6 micrograms then

$$
\begin{align*}
& 2 x+4 y+6 z=1000 \tag{1}\\
& 3 x+7 y+10 z=1600 \tag{2}\\
& 5 x+9 y+14 z=2400 \tag{3}
\end{align*}
$$

Solving these gives multiple solutions. These equations are consistent.
Solving (1) $\times 3-(2) \times 2$ gives
$-2 y-2 z=-200$
$y+z=100$
(1) $\times 5-(3) \times 2$ gives
$2 y+2 z=200$
$y+z=100$
(1) $\times 7-(2) \times 4$ gives
$2 x \quad+2 z=600$
$x+z=300$

So solution is $300-\mathrm{z}, 100-\mathrm{z}, \mathrm{z}$
If $z>100$ the amount of Yum would be negative so $0 \leq z \leq 100$
So if $z=20$ grams, $x=280$ grams and $y=80$ grams
ie one solution is 280 grams of Xena, 80 grams of Yum and 20 grams of Zany
if $z=50, x=250, y=50$ so another solution is 250 grams of Xena, 50 grams of Yum and 50 grams of Zany
If the amount of Vitamin A in Zany is k micrograms
then $2 x+4 y+k z=1000$
$3 x+7 y+10 z=1600$
$5 x+9 y+14 z=2400$
Using the calculator I got 0 micrograms of Zany for lots of values I tried for k except when
$k=6$ micrograms when there is no unique solution.
Maybe this is because (3) $=4 \times(1)-(2)$

