Garden framing -

Finding out the best option for macrocarpa sleepers:
Option 1:
$200 \mathrm{~mm} \times 100 \mathrm{~mm}$ by $2.1 \mathrm{~m}=20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 210 \mathrm{~cm}$
$210 \mathrm{~cm} \times 6=1260 \mathrm{~cm}$
$\$ 66.78 \times 6=\$ 400.68$
Removing GST: 400.68/1.15 = \$348.42
Option 2:
$200 \mathrm{~mm} \times 100 \mathrm{~mm} \times 4 \mathrm{~m}=20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 400 \mathrm{~cm}$
$400 \mathrm{~cm} \times 3=1200 \mathrm{~cm}$
$\$ 130 \times 3=\$ 390$
Removing GST: 390/1.15 $=\$ 339.13$

Option one would be best for this scenario because it maximizes the area of the garden whilst only costing $\$ 9.29$ more. As the primary focus is to maximize area space, this option would be better as it adds 60 cm more to the timber while still being less than $\$ 350$. Option one costs $\$ 348.42$, and option two costs $\$ 339.13$. If the price difference was larger than $\$ 9.29$ I would say that option two is better as it would cost less for not a large change in timber size. But as this difference is under $\$ 10$, I think it is worth it to have the extra area space as this is one of the main requirements of the garden.

Dimensions:
Maximizing area space

Side 1	Side 3	Area
$1 m$	5 m	$5 \mathrm{~m}^{2}$
2 m	4 m	$8 \mathrm{~m}^{2}$
3 m	3 m	$9 \mathrm{~m}^{2}$
4 m	2 m	$8 \mathrm{~m}^{2}$
5 m	1 m	$5 \mathrm{~m}^{2}$

Using this table, I have decided that each side of the garden will be 3 metres long. This area will be $9 \mathrm{~m}^{2}$. This also means that the garden will be in a square shape. This would look better than a rectangle and is neater.

Gardening mix -

Finding the amount and cost of gardening mix necessary:
Finding the volume of garden needed to fill:
$3 \times 3 \times 0.15=1.35 \mathrm{~m}^{3}$
I did this because to find the volume it is base x height x depth. I removed 5 cm from the top of where it needs to fill as it needs to sit 5 cm below the top edge of the garden.

Removing space for water tank -

Removing part of the gardening mix to make room for the water tank:
Cylinder -
$\mathrm{R}=0.25$
$\mathrm{H}=0.15$
Volume: $\pi r^{2} \mathrm{~h}=\pi \times 0.25 \times 0.25 \times 0.15=0.029 \mathrm{~m}^{3}$
Removing the volume of the bottom cylinder from the garden that needs to be filled:
$1.35 \mathrm{~m}^{3}-0.029 \mathrm{~m}^{3}=1.321 \mathrm{~m}^{3}$
$1.321 \mathrm{~m}^{3}=1321 \mathrm{~L}$
$1321 / 40=33.025$
Rounded $=34$
After removing the volume of the water tank from where the gardening mix needs to be filled, it means the same number of gardening mix needed.
$34 \times \$ 8.83=\$ 300.22$
Removing GST: \$300.22/1.15 = \$261.06

Total cost:

348.42 + $261.06=\$ 609.48$

