Student 3: Low Merit

Aim: To find a relationship between the distance travelled by a marble down a ramp and the time taken.

Method

To improve accuracy in this investigation I will stay at eye level with the marble as it rolls down the wooden channel so I am able to know when the marble is released and when it stops. This will help prevent parallax error. (1)
To further improve accuracy in this investigation I will take 3 measurements at each release height to be as accurate as possible. This will help to prevent reaction time error.
To improve accuracy I will check each measurement that was made on the wooden channel using a one metre ruler. But by using a one metre ruler, zero error presents itself, so I will measure from the first measurement of the ruler rather than the beginning / end of the ruler. I will control the angle of the wooden channel to the bench by using play dough to keep it in place. I will also control the mass and shape of the marble by making sure it is clean and round. (2)

Results Table

Distance (m)	Time 1 (s)	Time 2 (s)	Time 3 (s)	Time ave	$T^{2}\left(s^{2}\right)$
	(3)				
0.300	0.8	0.7	0.7	0.7	0.5
0.500	1.0	1.0	1.0	1.0	1.0
0.700	1.2	1.1	1.2	1.2	1.4
0.900	1.3	1.3	1.3	1.3	1.7
1.200	1.5	1.4	1.5	1.5	2.3

Initial Graph

Relationship: $y \propto x^{2}=d \propto t^{2}$

Linear Graph

Conclusion

Gradient $=0.52 \mathrm{~m} \mathrm{~s}^{-2}$
Equation is $d=0.52 t^{2}+0.00$ (4)

