Student 3: Low Merit

Aim: To find a relationship between the distance travelled by a marble down a ramp and the time taken.

Method

To improve accuracy in this investigation I will stay at eye level with the marble as it rolls down the wooden channel so I am able to know when the marble is released and when it stops. This will help prevent parallax error. (1)

To further improve accuracy in this investigation I will take 3 measurements at each release height to be as accurate as possible. This will help to prevent reaction time error. To improve accuracy I will check each measurement that was made on the wooden channel using a one metre ruler. But by using a one metre ruler, zero error presents itself, so I will measure from the first measurement of the ruler rather than the beginning / end of the ruler. I will control the angle of the wooden channel to the bench by using play dough to keep it in place. I will also control the mass and shape of the marble by making sure it is clean and round. (2)

Distance (m)	<mark>Time 1</mark> (s)	<mark>Time 2</mark> (s)	<mark>Time 3</mark> (s)	Time ave	$T^{2}(s^{2})$
	(3)				
0.300	<mark>0.8</mark>	<mark>0.7</mark>	<mark>0.7</mark>	<mark>0.7</mark>	0.5
0.500	<mark>1.0</mark>	<mark>1.0</mark>	<mark>1.0</mark>	<mark>1.0</mark>	1.0
0.700	<mark>1.2</mark>	<mark>1.1</mark>	<mark>1.2</mark>	<mark>1.2</mark>	1.4
0.900	<mark>1.3</mark>	<mark>1.3</mark>	<mark>1.3</mark>	<mark>1.3</mark>	1.7
1.200	<mark>1.5</mark>	<mark>1.4</mark>	<mark>1.5</mark>	<mark>1.5</mark>	2.3

Results Table

Initial Graph

Relationship: $y \propto x^2 = d \propto t^2$

Linear Graph

Conclusion Gradient = 0.52 m s^2 Equation is d = $0.52t^2 + 0.00$ (4)