Student 4: High Achieved

Aim: To find a relationship between the distance travelled by a marble down a ramp and the time taken.

Method

Lean the ramp at an appropriate angle against the clamp stand. (1) Put a stopper on the channel at a length that looks good. Roll the marble from the top and time how long it takes to hit the stopper. Record all data and collate together at the end.

Results (2)

Distance (m)	t1 (s)	<i>t2 (s)</i>	t3 (s)	Average t	\sqrt{D}
				(s)	
1.200	1.41	1.38	1.41	1.40	1.095
1.100	1.37	1.35	1.32	1.35	1.049
1.000	1.28	1.31	1.28	1.29	1.000
0.900	1.22	1.22	1.22	1.22	0.949
0.800	1.19	1.15	1.18	1.17	0.894
0.700	1.07	1.09	1.10	1.09	0.837

Initial Graph (3)

Linear Graph

Conclusion

 $gradient = \frac{rise}{run} = \frac{0.49}{0.400} = 1.2$

y = mx + c

t = 1.2 D + 0.7

From my non-linear graph, the relationship I concluded was time is proportional to the square root of distance (4). The correct mathematical relationship from my linear graph was t = 1.2 D + 0.7 (5).

Parallax error was an issue when it came to placing the stopper and also placing the marble in the same place each time. To stop this from occurring I stood up and stood in line with the marks so they would be the same. For the stopper I placed my ruler on the line also to line it up. (6)